These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 11268209)
21. Two new fossil flowers of magnoliid affinity from the Late Cretaceous of New Jersey. Crepet WL; Nixon KC Am J Bot; 1998 Sep; 85(9):1273-88. PubMed ID: 21685014 [TBL] [Abstract][Full Text] [Related]
22. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964 [TBL] [Abstract][Full Text] [Related]
23. Phylogenetic analysis of fossil flowers using an angiosperm-wide data set: proof-of-concept and challenges ahead. Schönenberger J; von Balthazar M; López Martínez A; Albert B; Prieu C; Magallón S; Sauquet H Am J Bot; 2020 Oct; 107(10):1433-1448. PubMed ID: 33026116 [TBL] [Abstract][Full Text] [Related]
24. Early Cretaceous lineages of monocot flowering plants. Bremer K Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4707-11. PubMed ID: 10759567 [TBL] [Abstract][Full Text] [Related]
25. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069 [TBL] [Abstract][Full Text] [Related]
27. Diversity in obscurity: fossil flowers and the early history of angiosperms. Friis EM; Pedersen KR; Crane PR Philos Trans R Soc Lond B Biol Sci; 2010 Feb; 365(1539):369-82. PubMed ID: 20047865 [TBL] [Abstract][Full Text] [Related]
28. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. Leebens-Mack J; Raubeson LA; Cui L; Kuehl JV; Fourcade MH; Chumley TW; Boore JL; Jansen RK; depamphilis CW Mol Biol Evol; 2005 Oct; 22(10):1948-63. PubMed ID: 15944438 [TBL] [Abstract][Full Text] [Related]
29. Tanispermum, a new genus of hemi-orthotropous to hemi-anatropous angiosperm seeds from the Early Cretaceous of eastern North America. Friis EM; Crane PR; Pedersen KR Am J Bot; 2018 Aug; 105(8):1369-1388. PubMed ID: 30080239 [TBL] [Abstract][Full Text] [Related]
30. Lower cretaceous angiosperm flowers: fossil evidence on early radiation of dicotyledons. Crane PR; Friis EM; Pedersen KR Science; 1986 May; 232(4752):852-4. PubMed ID: 17755967 [TBL] [Abstract][Full Text] [Related]
31. Scutifolium jordanicum gen. et sp. nov. (Cabombaceae), an aquatic fossil plant from the Lower Cretaceous of Jordan, and the relationships of related leaf fossils to living genera. Taylor DW; Brenner GJ; Basha SH Am J Bot; 2008 Mar; 95(3):340-52. PubMed ID: 21632359 [TBL] [Abstract][Full Text] [Related]
32. Reconstructing the ancestral angiosperm flower and its initial specializations. Endress PK; Doyle JA Am J Bot; 2009 Jan; 96(1):22-66. PubMed ID: 21628175 [TBL] [Abstract][Full Text] [Related]
33. Oldest record of Trimeniaceae from the early Cretaceous of northern Japan. Yamada T; Nishida H; Umebayashi M; Uemura K; Kato M BMC Evol Biol; 2008 May; 8():135. PubMed ID: 18462503 [TBL] [Abstract][Full Text] [Related]
34. Araceae from the Early Cretaceous of Portugal: evidence on the emergence of monocotyledons. Friis EM; Pedersen KR; Crane PR Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16565-70. PubMed ID: 15546982 [TBL] [Abstract][Full Text] [Related]
35. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for pinus. Willyard A; Syring J; Gernandt DS; Liston A; Cronn R Mol Biol Evol; 2007 Jan; 24(1):90-101. PubMed ID: 16997907 [TBL] [Abstract][Full Text] [Related]
36. The water lily genome and the early evolution of flowering plants. Zhang L; Chen F; Zhang X; Li Z; Zhao Y; Lohaus R; Chang X; Dong W; Ho SYW; Liu X; Song A; Chen J; Guo W; Wang Z; Zhuang Y; Wang H; Chen X; Hu J; Liu Y; Qin Y; Wang K; Dong S; Liu Y; Zhang S; Yu X; Wu Q; Wang L; Yan X; Jiao Y; Kong H; Zhou X; Yu C; Chen Y; Li F; Wang J; Chen W; Chen X; Jia Q; Zhang C; Jiang Y; Zhang W; Liu G; Fu J; Chen F; Ma H; Van de Peer Y; Tang H Nature; 2020 Jan; 577(7788):79-84. PubMed ID: 31853069 [TBL] [Abstract][Full Text] [Related]
37. Bird evolution in the Eocene: climate change in Europe and a Danish fossil fauna. Lindow BE; Dyke GJ Biol Rev Camb Philos Soc; 2006 Nov; 81(4):483-99. PubMed ID: 16893476 [TBL] [Abstract][Full Text] [Related]
38. Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae). Sauquet H; Weston PH; Barker NP; Anderson CL; Cantrill DJ; Savolainen V Mol Phylogenet Evol; 2009 Apr; 51(1):31-43. PubMed ID: 19135535 [TBL] [Abstract][Full Text] [Related]
39. Archaefructaceae, a new basal angiosperm family. Sun G; Ji Q; Dilcher DL; Zheng S; Nixon KC; Wang X Science; 2002 May; 296(5569):899-904. PubMed ID: 11988572 [TBL] [Abstract][Full Text] [Related]
40. Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Doyle JA Mol Phylogenet Evol; 1998 Jun; 9(3):448-62. PubMed ID: 9667993 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]