These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1126928)

  • 1. N-Methylglutamate synthetase. Substrate-flavin hydrogen transfer reactions probed with deazaflavin mononucleotide.
    Jorns MS; Hersh LB
    J Biol Chem; 1975 May; 250(10):3620-8. PubMed ID: 1126928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleophilic addition reactions of free and enzyme-bound deazaflavin.
    Jorns MS; Hersh LB
    J Biol Chem; 1976 Aug; 251(16):4872-81. PubMed ID: 8450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the mechanism of Mycobacterium smegmatis L-lactate oxidase. 5-Deazaflavin mononucleotide as a coenzyme analogue.
    Averill BA; Schonbrunn A; Abeles RH
    J Biol Chem; 1975 Feb; 250(4):1603-5. PubMed ID: 234460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-methylglutamate synthetase. The use of flavin mononucleotide in oxidative catalysis.
    Pollock RJ; Hersh LB
    J Biol Chem; 1973 Oct; 248(19):6724-33. PubMed ID: 4745441
    [No Abstract]   [Full Text] [Related]  

  • 5. Use of 5-deazaFAD to study hydrogen transfer in the D-amino acid oxidase reaction.
    Hersh LB; Jorns MS
    J Biol Chem; 1975 Nov; 250(22):8728-34. PubMed ID: 390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the involvement of acid/base chemistry in the reaction catalyzed by the type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase from Staphylococcus aureus.
    Thibodeaux CJ; Mansoorabadi SO; Kittleman W; Chang WC; Liu HW
    Biochemistry; 2008 Feb; 47(8):2547-58. PubMed ID: 18229948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylamine utilization via the N-methylglutamate pathway in Methylobacterium extorquens PA1 involves a novel flow of carbon through C1 assimilation and dissimilation pathways.
    Nayak DD; Marx CJ
    J Bacteriol; 2014 Dec; 196(23):4130-9. PubMed ID: 25225269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the interpretation of quantitative structure-function activity relationship data for lactate oxidase.
    Yorita K; Misaki H; Palfey BA; Massey V
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2480-5. PubMed ID: 10706608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced diphosphopyridine nucleotide peroxidase. Intermediates formed on reduction of the enzyme with dithionite or reduced diphosphopyridine nucleotide.
    Dolin MI
    J Biol Chem; 1975 Jan; 250(1):310-7. PubMed ID: 166990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solubilization, partial purification and properties of N-methylglutamate dehydrogenase from Pseudomonas aminovorans.
    Bamforth CW; Large PJ
    Biochem J; 1977 Feb; 161(2):357-70. PubMed ID: 15545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization, and chemical properties of the flavin coenzyme analogues 5-deazariboflavin, 5-deazariboflavin 5'-phosphate, and 5-deazariboflavin 5'-diphosphate, 5'leads to5'-adenosine ester.
    Spencer R; Fisher J; Walsh C
    Biochemistry; 1976 Mar; 15(5):1043-53. PubMed ID: 3206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase.
    Ravasio S; Curti B; Vanoni MA
    Biochemistry; 2001 May; 40(18):5533-41. PubMed ID: 11331018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5.
    Latypova E; Yang S; Wang YS; Wang T; Chavkin TA; Hackett M; Schäfer H; Kalyuzhnaya MG
    Mol Microbiol; 2010 Jan; 75(2):426-39. PubMed ID: 19943898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The recombinant alpha subunit of glutamate synthase: spectroscopic and catalytic properties.
    Vanoni MA; Fischer F; Ravasio S; Verzotti E; Edmondson DE; Hagen WR; Zanetti G; Curti B
    Biochemistry; 1998 Feb; 37(7):1828-38. PubMed ID: 9485308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-thioriboflavin 5'-phosphate (2-thio-FMN) lactate oxidase.
    Choong YS; Massey V
    Eur J Biochem; 1983 Apr; 131(3):501-8. PubMed ID: 6840063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the chemistry of flavin reduction and oxidation in Escherichia coli dihydroorotate dehydrogenase obtained by rapid reaction studies.
    Palfey BA; Björnberg O; Jensen KF
    Biochemistry; 2001 Apr; 40(14):4381-90. PubMed ID: 11284694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and properties of 8-CN-flavin nucleotide analogs and studies with flavoproteins.
    Murthy YV; Massey V
    J Biol Chem; 1998 Apr; 273(15):8975-82. PubMed ID: 9535883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution.
    Haines DC; Sevrioukova IF; Peterson JA
    Biochemistry; 2000 Aug; 39(31):9419-29. PubMed ID: 10924137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for presence of an internal thiolester bond in third component of human complement.
    Tack BF; Harrison RA; Janatova J; Thomas ML; Prahl JW
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5764-8. PubMed ID: 6934510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-catalyzed redox reactions with the flavin analogues 5-deazariboflavin, 5-deazariboflavin 5'-phosphte, and 5-deazariboflavin 5'-diphosphate, 5' leads to 5'-adenosine ester.
    Fisher J; Spencer R; Walsh C
    Biochemistry; 1976 Mar; 15(5):1054-64. PubMed ID: 3207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.