These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1126974)

  • 21. A viscoelastic model for use in predicting arterial pulse waves.
    Holenstein R; Niederer P; Anliker M
    J Biomech Eng; 1980 Nov; 102(4):318-25. PubMed ID: 6965195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemodynamics.
    Taylor MG
    Annu Rev Physiol; 1973; 35():87-116. PubMed ID: 4575165
    [No Abstract]   [Full Text] [Related]  

  • 23. Energy dissipation in mammalian arteries--an assessment of the distribution of energy dissipation between the blood and the vessel wall.
    Bodley WE
    J Biomech; 1976; 9(8):489-94. PubMed ID: 956192
    [No Abstract]   [Full Text] [Related]  

  • 24. [Systemic and arterial physiology. Recent data (author's transl)].
    Bouvrain Y; Levy B; Saumont R
    Ann Cardiol Angeiol (Paris); 1976; 25(3):191-200. PubMed ID: 937986
    [No Abstract]   [Full Text] [Related]  

  • 25. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer simulation of non-newtonian effects on blood flow in large arteries.
    Leuprecht A; Perktold K
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):149-63. PubMed ID: 11264865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Significant parameters in arterial pressure and velocity development.
    Vander Werff TJ
    J Biomech; 1974 Sep; 7(5):437-47. PubMed ID: 4443357
    [No Abstract]   [Full Text] [Related]  

  • 28. Oscillatory flow in thin-walled curved elastic tubes--summary.
    Vayo HW; Ghista DN; Chandran KB
    Bull Math Biol; 1977; 39(2):245-8. PubMed ID: 851663
    [No Abstract]   [Full Text] [Related]  

  • 29. The temporal changes of arterial blood flow dynamics.
    Shibeshi SS; Collins WE
    Biomed Sci Instrum; 2006; 42():96-101. PubMed ID: 16817592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A finite-element model of blood flow in arteries including taper, branches, and obstructions.
    Porenta G; Young DF; Rogge TR
    J Biomech Eng; 1986 May; 108(2):161-7. PubMed ID: 3724104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure-radius relationships for elastic tubes and their applications to arteries: Part 2--A comparison of theory and experiment for a rubber tube.
    Taylor LA; Gerrard JH
    Med Biol Eng Comput; 1977 Jan; 15(1):18-21. PubMed ID: 194118
    [No Abstract]   [Full Text] [Related]  

  • 32. Theoretical study on the effect of pressure dependency of wall elasticity on the arterial pressure pattern.
    Mochizuji M
    Jpn J Physiol; 1969 Feb; 19(1):24-40. PubMed ID: 5305298
    [No Abstract]   [Full Text] [Related]  

  • 33. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation.
    Canić S; Hartley CJ; Rosenstrauch D; Tambaca J; Guidoboni G; Mikelić A
    Ann Biomed Eng; 2006 Apr; 34(4):575-92. PubMed ID: 16550449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical modeling of arterial blood flow and correlation to atherosclerosis.
    Perktold K; Rappitsch G
    Technol Health Care; 1995 Dec; 3(3):139-51. PubMed ID: 8749862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of blood flow in cat's lung with detailed anatomical and elasticity data.
    Zhuang FY; Fung YC; Yen RT
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Oct; 55(4):1341-8. PubMed ID: 6629968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect studies of Uyghur sand therapy on the hemodynamics of the knee-joint arteries.
    Fu R; Mahemut D; Tiyipujiang R; Aihemaiti K; Ainiwaierjiang N
    Biomed Mater Eng; 2014; 24(6):2381-8. PubMed ID: 25226938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical analysis and linear theory of pulsatile flow in cylindrical deformable tubes: the testing of a numerical model for blood calculation.
    Gerrard JH
    Med Biol Eng Comput; 1982 Jan; 20(1):49-57. PubMed ID: 7098558
    [No Abstract]   [Full Text] [Related]  

  • 39. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.