These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1126977)

  • 21. Effect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions.
    Deymier-Black AC; Singhal A; Almer JD; Dunand DC
    Acta Biomater; 2013 Feb; 9(2):5305-12. PubMed ID: 22871638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [An assessment of the mineral content in the femur of patients with chronic renal failure by computed tomography].
    Sakurai K; Iwanami S; Horiike S; Matsubayashi T; Nakamura M; Shimada H; Marumo F
    Nihon Igaku Hoshasen Gakkai Zasshi; 1984 Sep; 44(9):1141-50. PubMed ID: 6522267
    [No Abstract]   [Full Text] [Related]  

  • 23. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.
    Enns-Bray WS; Ferguson SJ; Helgason B
    J Biomech; 2018 Jun; 75():46-52. PubMed ID: 29773425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation between longitudinal, circumferential, and radial moduli in cortical bone: effect of mineral content.
    Macione J; Depaula CA; Guzelsu N; Kotha SP
    J Mech Behav Biomed Mater; 2010 Jul; 3(5):405-13. PubMed ID: 20416555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in bone mineral content in the femur following total hip arthroplasty.
    Lindberg H; Nilsson B
    Clin Orthop Relat Res; 1984 Mar; (183):276-9. PubMed ID: 6697595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anisotropy and strain rate effects on bovine cortical bone: combination of high-resolution imaging and dynamic loading.
    Mayeur O; Haugou G; Chaari F
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():206-8. PubMed ID: 23923911
    [No Abstract]   [Full Text] [Related]  

  • 27. The effect of strain rate on the failure stress and toughness of bone of different mineral densities.
    Wallace RJ; Pankaj P; Simpson AH
    J Biomech; 2013 Sep; 46(13):2283-7. PubMed ID: 23870507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constant strain rate compression of bovine cortical bone on the Split-Hopkinson Pressure Bar.
    Bekker A; Cloete TJ; Chinsamy-Turan A; Nurick GN; Kok S
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():443-9. PubMed ID: 25492009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A caffeine diet can alter the mechanical properties of the bones of young ovariectomized rats.
    Ohta M; Ide K; Cheuk G; Cheuk SL; Yazdani M; Nakamoto T; Thomas KA
    Ann Nutr Metab; 2002; 46(3-4):108-13. PubMed ID: 12169853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Dependence of shrinkage on the mineral content of experimentally burned bones].
    Herrmann B
    Anthropol Anz; 1977 Aug; 36(1):7-12. PubMed ID: 921230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural, mechanical, and material properties of fetal cranial bone.
    Kriewall TJ
    Am J Obstet Gynecol; 1982 Jul; 143(6):707-14. PubMed ID: 7091245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Links between mechanical behavior of cancellous bone and its microstructural properties under dynamic loading.
    Prot M; Saletti D; Pattofatto S; Bousson V; Laporte S
    J Biomech; 2015 Feb; 48(3):498-503. PubMed ID: 25577437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interrelationships between bone mineral at different skeletal sites in male and female cadavera.
    Aitken JM; Smith CB; Horton PW; Clark DL; Boyd JF; Smith DA
    J Bone Joint Surg Br; 1974 May; 56(2):370-5. PubMed ID: 4854914
    [No Abstract]   [Full Text] [Related]  

  • 36. The effect of compression on bone mineral. A preliminary report.
    Pintér J; Rischák G; Lénárt G
    Clin Orthop Relat Res; 1972; 83():286-91. PubMed ID: 5014824
    [No Abstract]   [Full Text] [Related]  

  • 37. Problems in the choice of a representative bone for mineral analysis: evidence from five bones of rats at two stages of development.
    Indritz AN; Hegarty PV
    J Anat; 1980 Sep; 131(Pt 2):317-20. PubMed ID: 7462098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of compact sandwich specimen to determine the critical strain energy release rate of bone.
    Paruchuru SP; Wang X; Agrawal CM
    Biomed Mater Eng; 2007; 17(4):249-53. PubMed ID: 17611301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Experimental investigations on the construction principle of the human femur].
    Ackermand D; Catel W; Hörmann PK; Kern H
    Z Zellforsch Mikrosk Anat; 1972; 124(1):12-38. PubMed ID: 5011138
    [No Abstract]   [Full Text] [Related]  

  • 40. Relations between age, mineral density and mechanical properties of human femoral compacta.
    Smith CB; Smith DA
    Acta Orthop Scand; 1976 Oct; 47(5):496-502. PubMed ID: 998184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.