These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11269961)

  • 1. Relationship between carbohydrate concentration and root growth potential in coniferous seedlings from three climates during cold hardening and dehardening.
    Tinus RW; Burr KE; Atzmon N; Riov J
    Tree Physiol; 2000 Oct; 20(16):1097-104. PubMed ID: 11269961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships among cold hardiness, root growth potential and bud dormancy in three conifers.
    Burr KE; Tinus RW; Wallner SJ; King RM
    Tree Physiol; 1989 Sep; 5(3):291-306. PubMed ID: 14972975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of three cold hardiness tests for conifer seedlings.
    Burr KE; Tinus RW; Wallner SJ; King RM
    Tree Physiol; 1990 Dec; 6(4):351-69. PubMed ID: 14972928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-plant frost hardiness of mycorrhizal (Hebeloma sp. or Suillus luteus) and non-mycorrhizal Scots pine seedlings.
    Korhonen A; Lehto T; Heinonen J; Repo T
    Tree Physiol; 2019 Apr; 39(4):526-535. PubMed ID: 30371901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations.
    Bansal S; St Clair JB; Harrington CA; Gould PJ
    Glob Chang Biol; 2015 Oct; 21(10):3814-26. PubMed ID: 25920066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of elevated CO(2) and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii).
    Guak S; Olsyzk DM; Fuchigami LH; Tingey DT
    Tree Physiol; 1998 Oct; 18(10):671-679. PubMed ID: 12651417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freezing tolerance of conifer seeds and germinants.
    Hawkins BJ; Guest HJ; Kolotelo D
    Tree Physiol; 2003 Dec; 23(18):1237-46. PubMed ID: 14652223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.
    Villar-Salvador P; Peñuelas JL; Jacobs DF
    Tree Physiol; 2013 Feb; 33(2):221-32. PubMed ID: 23370549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrates in individual poplar fine roots: effects of root age and defoliation.
    Kosola KR; Dickmann DI; Parry D
    Tree Physiol; 2002 Jul; 22(10):741-6. PubMed ID: 12091156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root growth potential as an indicator of drought stress history.
    Tinus RW
    Tree Physiol; 1996 Sep; 16(9):795-9. PubMed ID: 14871687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frost hardening of Pinus radiata seedlings: effects of temperature on relative growth rate, carbon balance and carbohydrate concentration.
    Greer DH; Robinson LA; Hall AJ; Klages K; Donnison H
    Tree Physiol; 2000 Jan; 20(2):107-114. PubMed ID: 12651478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.
    Chang CY; Fréchette E; Unda F; Mansfield SD; Ensminger I
    Plant Physiol; 2016 Oct; 172(2):802-818. PubMed ID: 27591187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests.
    Brooks JR; Meinzer FC; Coulombe R; Gregg J
    Tree Physiol; 2002 Nov; 22(15-16):1107-17. PubMed ID: 12414370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold hardiness of interspecific hybrids between Pinus strobus and P. wallichiana measured by post-freezing needle electrolyte leakage.
    Lu P; Colombo SJ; Sinclair RW
    Tree Physiol; 2007 Feb; 27(2):243-50. PubMed ID: 17241966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species ecology determines the role of nitrogen nutrition in the frost tolerance of pine seedlings.
    Toca A; Oliet JA; Villar-Salvador P; Maroto J; Jacobs DF
    Tree Physiol; 2018 Jan; 38(1):96-108. PubMed ID: 29301052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semi-physiological model of cold hardening and dehardening in walnut stem.
    Poirier M; Lacointe A; Améglio T
    Tree Physiol; 2010 Dec; 30(12):1555-69. PubMed ID: 21030404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings.
    Ogren E
    Tree Physiol; 1997 Jan; 17(1):47-51. PubMed ID: 14759913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season.
    Domisch T; Finér L; Lehto T
    Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens).
    Willaume M; Pagès L
    Ann Bot; 2011 Apr; 107(4):653-62. PubMed ID: 21239407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.