These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 11270075)
1. Cobalt-base alloys used in bone surgery. Marti A Injury; 2000 Dec; 31 Suppl 4():18-21. PubMed ID: 11270075 [TBL] [Abstract][Full Text] [Related]
2. A review on manufacturing processes of cobalt-chromium alloy implants and its impact on corrosion resistance and biocompatibility. Mani G; Porter D; Collins S; Schatz T; Ornberg A; Shulfer R J Biomed Mater Res B Appl Biomater; 2024 Jun; 112(6):e35431. PubMed ID: 38817036 [TBL] [Abstract][Full Text] [Related]
4. Corrosion behavior of cast and forged cobalt-based alloys for double-alloy joint endoprostheses. Süry P; Semlitsch M J Biomed Mater Res; 1978 Sep; 12(5):723-41. PubMed ID: 701305 [TBL] [Abstract][Full Text] [Related]
5. Biocompatibility evaluation and corrosion resistance of tungsten added Co-30Cr-4Mo-1Ni alloy. Aherwar A; Bahraminasab M Biomed Mater Eng; 2017; 28(6):687-701. PubMed ID: 29171973 [TBL] [Abstract][Full Text] [Related]
6. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments. Mercieca S; Caligari Conti M; Buhagiar J; Camilleri J J Appl Biomater Funct Mater; 2018 Jan; 16(1):47-54. PubMed ID: 29076515 [TBL] [Abstract][Full Text] [Related]
7. Effect of heat treatment on the bio-corrosion properties and wear resistance of antibacterial Co-29Cr-6Mo-xCu alloys. Li W; Wang X; Liu C; Qin G; Zhang E J Mater Sci Mater Med; 2019 Oct; 30(10):112. PubMed ID: 31583472 [TBL] [Abstract][Full Text] [Related]
8. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing. Zeng L; Xiang N; Wei B J Prosthet Dent; 2014 Nov; 112(5):1217-24. PubMed ID: 24836284 [TBL] [Abstract][Full Text] [Related]
9. Biomaterial optimization in total disc arthroplasty. Hallab N; Link HD; McAfee PC Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185 [TBL] [Abstract][Full Text] [Related]
11. In vivo corrosion of cobalt-chromium and titanium wear particles. Shahgaldi BF; Heatley FW; Dewar A; Corrin B J Bone Joint Surg Br; 1995 Nov; 77(6):962-6. PubMed ID: 7593115 [TBL] [Abstract][Full Text] [Related]
12. Corrosion testing of sintered samples made of the Co-Cr-Mo alloy for surgical applications. Krasicka-Cydzik E; Oksiuta Z; Dabrowski JR J Mater Sci Mater Med; 2005 Mar; 16(3):197-202. PubMed ID: 15744610 [TBL] [Abstract][Full Text] [Related]
15. Osseointegration of cobalt-chrome alloy implants. Mavrogenis AF; Papagelopoulos PJ; Babis GC J Long Term Eff Med Implants; 2011; 21(4):349-58. PubMed ID: 22578000 [TBL] [Abstract][Full Text] [Related]
16. [Biodeterioration and corrosion of metallic implants and prostheses]. López GD Medicina (B Aires); 1993; 53(3):260-74. PubMed ID: 8114635 [TBL] [Abstract][Full Text] [Related]
17. Structure and corrosion resistance of Co-Cr-Mo alloy used in Birmingham Hip Resurfacing system. Dobruchowska E; Paziewska M; Przybyl K; Reszka K Acta Bioeng Biomech; 2017; 19(2):31-39. PubMed ID: 28869636 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical corrosion of metallic biomaterials. Pourbaix M Biomaterials; 1984 May; 5(3):122-34. PubMed ID: 6375748 [TBL] [Abstract][Full Text] [Related]
19. High strength Co-Cr-Mo alloy by hot isostatic pressing of powder. Bardos DI Biomater Med Devices Artif Organs; 1979; 7(1):73-80. PubMed ID: 454784 [TBL] [Abstract][Full Text] [Related]
20. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]