These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11271768)

  • 1. Screening for clostridium botulinum type A, B, and E in cooked chilled foods containing vegetables and raw material using polymerase chain reaction and molecular probes.
    Braconnier A; Broussolle V; Perelle S; Fach P; Nguyen-The C; Carlin F
    J Food Prot; 2001 Feb; 64(2):201-7. PubMed ID: 11271768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project.
    Carlin F; Girardin H; Peck MW; Stringer SC; Barker GC; Martinez A; Fernandez A; Fernandez P; Waites WM; Movahedi S; van Leusden F; Nauta M; Moezelaar R; Torre MD; Litman S
    Int J Food Microbiol; 2000 Sep; 60(2-3):117-35. PubMed ID: 11016602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevalence of Clostridium botulinum and thermophilic heat-resistant spores in raw carrots and green beans used in French canning industry.
    Sevenier V; Delannoy S; André S; Fach P; Remize F
    Int J Food Microbiol; 2012 Apr; 155(3):263-8. PubMed ID: 22405945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial activity of foodborne Paenibacillus and Bacillus spp. against Clostridium botulinum.
    Girardin H; Albagnac C; Dargaignaratz C; Nguyen-The C; Carlin F
    J Food Prot; 2002 May; 65(5):806-13. PubMed ID: 12030292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High prevalence of Clostridium botulinum in vegetarian sausages.
    Pernu N; Keto-Timonen R; Lindström M; Korkeala H
    Food Microbiol; 2020 Oct; 91():103512. PubMed ID: 32539985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High prevalence of Clostridium botulinum types A and B in honey samples detected by polymerase chain reaction.
    Nevas M; Hielm S; Lindström M; Horn H; Koivulehto K; Korkeala H
    Int J Food Microbiol; 2002 Jan; 72(1-2):45-52. PubMed ID: 11843412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of a new method for specific and sensitive enumeration of spores of nonproteolytic Clostridium botulinum types B, E, and F in foods and food materials.
    Peck MW; Plowman J; Aldus CF; Wyatt GM; Izurieta WP; Stringer SC; Barker GC
    Appl Environ Microbiol; 2010 Oct; 76(19):6607-14. PubMed ID: 20709854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini purée processing line.
    Guinebretiere MH; Girardin H; Dargaignaratz C; Carlin F; Nguyen-The C
    Int J Food Microbiol; 2003 May; 82(3):223-32. PubMed ID: 12593925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and germination of proteolytic Clostridium botulinum in vegetable-based media.
    Braconnier A; Broussolle V; Dargaignaratz C; Nguyen-The C; Carlin F
    J Food Prot; 2003 May; 66(5):833-9. PubMed ID: 12747693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a combined selection and enrichment PCR procedure for Clostridium botulinum Types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs.
    Dahlenborg M; Borch E; Rådström P
    Appl Environ Microbiol; 2001 Oct; 67(10):4781-8. PubMed ID: 11571185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerase chain reaction for detection of Clostridium botulinum types A, B and E in food, soil and infant faeces.
    Szabo EA; Pemberton JM; Gibson AM; Eyles MJ; Desmarchelier PM
    J Appl Bacteriol; 1994 Jun; 76(6):539-45. PubMed ID: 8027003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the prevalence of Bacillus cereus spores during the production of a cooked chilled vegetable product.
    Malakar PK; Barker GC; Peck MW
    J Food Prot; 2004 May; 67(5):939-46. PubMed ID: 15151231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection limit of Clostridium botulinum spores in dried mushroom samples sourced from China.
    Malakar PK; Plowman J; Aldus CF; Xing Z; Zhao Y; Peck MW
    Int J Food Microbiol; 2013 Aug; 166(1):72-6. PubMed ID: 23838282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials.
    Barker GC; Malakar PK; Plowman J; Peck MW
    Appl Environ Microbiol; 2016 Jan; 82(6):1675-85. PubMed ID: 26729721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Clostridium botulinum types A, B, E and F in foods by PCR and DNA probe.
    Aranda E; Rodríguez MM; Asensio MA; Córdoba JJ
    Lett Appl Microbiol; 1997 Sep; 25(3):186-90. PubMed ID: 9351261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevalence of Clostridium botulinum types B, E and F in faecal samples from Swedish cattle.
    Dahlenborg M; Borch E; Rådström P
    Int J Food Microbiol; 2003 Apr; 82(2):105-10. PubMed ID: 12568750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures.
    Carlin F; Peck MW
    Appl Environ Microbiol; 1996 Aug; 62(8):3069-72. PubMed ID: 8702303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prevalence of Clostridium botulinum in European river lamprey (Lampetra fluviatilis) in Finland.
    Merivirta LO; Lindström M; Björkroth KJ; Korkeala HJ
    Int J Food Microbiol; 2006 Jun; 109(3):234-7. PubMed ID: 16504325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and toxin production by Clostridium botulinum on inoculated fresh-cut packaged vegetables.
    Austin JW; Dodds KL; Blanchfield B; Farber JM
    J Food Prot; 1998 Mar; 61(3):324-8. PubMed ID: 9708304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of growth of nonproteolytic Clostridium botulinum type B in sous vide cooked meat products is achieved by using thermal processing but not nisin.
    Lindström M; Mokkila M; Skyttä E; Hyytiä-Trees E; Lähteenmäki L; Hielm S; Ahvenainen R; Korkeala H
    J Food Prot; 2001 Jun; 64(6):838-44. PubMed ID: 11403135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.