These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11271768)

  • 21. Inhibition of growth of nonproteolytic Clostridium botulinum type B in sous vide cooked meat products is achieved by using thermal processing but not nisin.
    Lindström M; Mokkila M; Skyttä E; Hyytiä-Trees E; Lähteenmäki L; Hielm S; Ahvenainen R; Korkeala H
    J Food Prot; 2001 Jun; 64(6):838-44. PubMed ID: 11403135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth and toxin production by non-proteolytic and proteolytic Clostridium botulinum in cooked vegetables.
    Carlin F; Peck MW
    Lett Appl Microbiol; 1995 Mar; 20(3):152-6. PubMed ID: 7766071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of storage time and temperature on the survival of Clostridium botulinum spores in acid media.
    Odlaug TE; Pflug IJ
    Appl Environ Microbiol; 1977 Jul; 34(1):30-3. PubMed ID: 18990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prevalence of Clostridium botulinum in food raw materials used in REPFEDs manufactured in France.
    Carlin F; Broussolle V; Perelle S; Litman S; Fach P
    Int J Food Microbiol; 2004 Mar; 91(2):141-5. PubMed ID: 14996457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin.
    Del Torre M; Stecchini ML; Braconnier A; Peck MW
    Int J Food Microbiol; 2004 Nov; 96(2):115-31. PubMed ID: 15364467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk assessment of proteolytic Clostridium botulinum in canned foie gras.
    Membré JM; Diao M; Thorin C; Cordier G; Zuber F; André S
    Int J Food Microbiol; 2015 Oct; 210():62-72. PubMed ID: 26093992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific detection of Clostridium botulinum type B by using the polymerase chain reaction.
    Szabo EA; Pemberton JM; Desmarchelier PM
    Appl Environ Microbiol; 1992 Jan; 58(1):418-20. PubMed ID: 1539990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth from spores of nonproteolytic Clostridium botulinum in heat-treated vegetable juice.
    Stringer SC; Haque N; Peck MW
    Appl Environ Microbiol; 1999 May; 65(5):2136-42. PubMed ID: 10224012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F.
    Skinner GE; Morrissey TR; Patazca E; Loeza V; Halik LA; Schill KM; Reddy NR
    J Food Prot; 2018 Feb; 81(2):261-271. PubMed ID: 29360398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Survey of infant foods for Clostridium botulinum spores.
    Guilfoyle DE; Yager JF
    J Assoc Off Anal Chem; 1983 Sep; 66(5):1302-4. PubMed ID: 6355058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymerase chain reaction for the rapid identification of Clostridium botulinum type A strains and detection in food samples.
    Fach P; Hauser D; Guillou JP; Popoff MR
    J Appl Bacteriol; 1993 Sep; 75(3):234-9. PubMed ID: 8244901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Persistence and mobility of a Clostridium botulinum spore population introduced to soil with spiked compost.
    Gessler F; Böhnel H
    FEMS Microbiol Ecol; 2006 Dec; 58(3):384-93. PubMed ID: 17117983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Presence of Clostridium botulinum spores in Matricaria chamomilla (chamomile) and its relationship with infant botulism.
    Bianco MI; Lúquez C; de Jong LI; Fernández RA
    Int J Food Microbiol; 2008 Feb; 121(3):357-60. PubMed ID: 18068252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined high pressure and thermal processing on inactivation of type E and nonproteolytic type B and F spores of Clostridium botulinum.
    Skinner GE; Marshall KM; Morrissey TR; Loeza V; Patazca E; Reddy NR; Larkin JW
    J Food Prot; 2014 Dec; 77(12):2054-61. PubMed ID: 25474050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of C. botulinum types in honey by mPCR.
    Gücükoğlu A; Terzi G; Çadirci Ö; Alişarli M; Kevenk O; Uyanik T
    J Food Sci; 2014 Apr; 79(4):M600-3. PubMed ID: 24621137
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Grenda T; Grabczak M; Sieradzki Z; Kwiatek K; Pohorecka K; Skubida M; Bober A
    J Vet Sci; 2018 Sep; 19(5):635-642. PubMed ID: 29929360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of reduced levels or suppression of sodium nitrite on the outgrowth and toxinogenesis of psychrotrophic Clostridium botulinum Group II type B in cooked ham.
    Lebrun S; Van Nieuwenhuysen T; Crèvecoeur S; Vanleyssem R; Thimister J; Denayer S; Jeuge S; Daube G; Clinquart A; Fremaux B
    Int J Food Microbiol; 2020 Dec; 334():108853. PubMed ID: 32932195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The detection and prevalence of Clostridium botulinum in pig intestinal samples.
    Myllykoski J; Nevas M; Lindström M; Korkeala H
    Int J Food Microbiol; 2006 Jul; 110(2):172-7. PubMed ID: 16806550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.