These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11271808)

  • 1. Progesterone side-chain degradation by some species of Aspergillus flavus group.
    Mostafa ME; Zohri AA
    Folia Microbiol (Praha); 2000; 45(3):243-7. PubMed ID: 11271808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of progesterone by aspergilli-side chain cleaving enzymes.
    el-Refai AH; Abdel-Fattah AF; Ibrahim KA; Sallam LA
    Z Allg Mikrobiol; 1973; 13(3):201-6. PubMed ID: 4201470
    [No Abstract]   [Full Text] [Related]  

  • 3. Baeyer-Villiger oxidation of progesterone by Aspergillus sojae PTCC 5196.
    Javid M; Nickavar B; Vahidi H; Faramarzi MA
    Steroids; 2018 Dec; 140():52-57. PubMed ID: 30055193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic characterization of Brazilian strains of Aspergillus flavus using DNA markers.
    Batista PP; Santos JF; Oliveira NT; Pires AP; Motta CM; Luna-Alves Lima EA
    Genet Mol Res; 2008 Aug; 7(3):706-17. PubMed ID: 18752198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature and water activity on growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus on cured meat model systems.
    Peromingo B; Rodríguez A; Bernáldez V; Delgado J; Rodríguez M
    Meat Sci; 2016 Dec; 122():76-83. PubMed ID: 27498402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progesterone transformation as a diagnostic feature in the classification of the Aspergillus niger group.
    Mostafa ME
    Lett Appl Microbiol; 1995 Apr; 20(4):243-6. PubMed ID: 7766120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyphasic approach to the identification of Aspergillus section Flavi isolated from Brazil nuts.
    Baquião AC; de Oliveira MM; Reis TA; Zorzete P; Diniz Atayde D; Correa B
    Food Chem; 2013 Aug; 139(1-4):1127-32. PubMed ID: 23561218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyacrylamide gel electrophoretic mobility of alkaline proteinase produced by Aspergillus flavus isolated from a penguin.
    Hirano K; Adachi Y; Ishibashi S
    J Vet Med Sci; 1993 Feb; 55(1):129-31. PubMed ID: 8461406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxigenic potentiality of Aspergillus flavus and Aspergillus parasiticus strains isolated from black pepper assessed by an LC-MS/MS based multi-mycotoxin method.
    Yogendrarajah P; Devlieghere F; Njumbe Ediage E; Jacxsens L; De Meulenaer B; De Saeger S
    Food Microbiol; 2015 Dec; 52():185-96. PubMed ID: 26338134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aflatoxin B1 (AFB1) production by Aspergillus flavus and Aspergillus parasiticus on ground Nyjer seeds: The effect of water activity and temperature.
    Gizachew D; Chang CH; Szonyi B; De La Torre S; Ting WE
    Int J Food Microbiol; 2019 May; 296():8-13. PubMed ID: 30825812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in vitro metabolism of progesterone, 4-androstene-3,17-dione, testosterone and 17 beta-hydroxy-5 alpha-androstan-3-one by fetal rhesus monkey testes.
    Coffey JC; Johnsonbaugh RE
    Steroids; 1979 Apr; 33(4):427-34. PubMed ID: 108818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Aspergillus section Flavi isolated from fresh chestnuts and along the chestnut flour process.
    Prencipe S; Siciliano I; Contessa C; Botta R; Garibaldi A; Gullino ML; Spadaro D
    Food Microbiol; 2018 Feb; 69():159-169. PubMed ID: 28941897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycotoxin producing potential of some isolates of Aspergillus flavus and Eurotium groups from meat products.
    el-Kady I; el-Maraghy S; Zohri AN
    Microbiol Res; 1994 Sep; 149(3):297-307. PubMed ID: 7987615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of progesterone and testosterone by a Bacillus sp.
    Mahato SB; Banerjee S; Sahu NP
    Steroids; 1984 May; 43(5):545-58. PubMed ID: 6531787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae.
    Geiser DM; Dorner JW; Horn BW; Taylor JW
    Fungal Genet Biol; 2000 Dec; 31(3):169-79. PubMed ID: 11273679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycotoxin production and predictive modelling kinetics on the growth of Aspergillus flavus and Aspergillus parasiticus isolates in whole black peppercorns (Piper nigrum L).
    Yogendrarajah P; Vermeulen A; Jacxsens L; Mavromichali E; De Saeger S; De Meulenaer B; Devlieghere F
    Int J Food Microbiol; 2016 Jul; 228():44-57. PubMed ID: 27088871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of novel Quasi reverse steroidal substrates by Aspergillus tamarii KITA: bypass of lactonisation and an exclusive role for the minor hydroxylation pathway.
    Hunter AC; Kennedy S; Clabby SJ; Elsom J
    Biochim Biophys Acta; 2005 May; 1734(2):190-7. PubMed ID: 15904875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steroid metabolism in gonads of turtle embryos as a function of the incubation temperature of eggs.
    Desvages G; Pieau C
    J Steroid Biochem Mol Biol; 1991 Aug; 39(2):203-13. PubMed ID: 1832288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progesterone transformation as a biochemical aid in classification of the genus Emericella.
    Zohri AA
    Folia Microbiol (Praha); 2000; 45(5):391-6. PubMed ID: 11347266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial transformation of steroids--II. Transformations of progesterone, testosterone and androstenedione by Phycomyces blakesleeanus.
    Smith KE; Latif S; Kirk DN
    J Steroid Biochem; 1989 Mar; 32(3):445-51. PubMed ID: 2704241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.