BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11271816)

  • 1. The membrane potential of Methanobacterium thermoautotrophicum under different external conditions.
    Polák P; Smigán P; Greksák M
    Folia Microbiol (Praha); 2000; 45(2):107-13. PubMed ID: 11271816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-driven ATP synthesis in Methanobacterium thermoautotrophicum and its differentiation from H(+)-driven ATP synthesis by rhodamine 6G.
    Smigán P; Majerník A; Greksák M
    FEBS Lett; 1994 Aug; 349(3):424-8. PubMed ID: 8050608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)-driven ATP synthesis in Methanobacterium thermoautotrophicum and its differentiation from H(+)-driven ATP synthesis by rhodamine 6G.
    Smigán P; Majerník A; Greksák M
    FEBS Lett; 1994 Jun; 347(2-3):190-4. PubMed ID: 8034000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convenient fluorescence-based methods to measure membrane potential and intracellular pH in the Archaeon Methanobacterium thermoautotrophicum.
    de Poorter LM; Keltjens JT
    J Microbiol Methods; 2001 Nov; 47(2):233-41. PubMed ID: 11576687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the Na+/H+ antiport in the archaeon Methanobacterium thermoautotrophicum strain delta H.
    Majerník A; Smigán P; Greksák M
    Biochem Mol Biol Int; 1997 Sep; 43(1):123-32. PubMed ID: 9315290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a neomycin-resistant mutant of Methanobacterium thermoautotrophicum with a lesion in Na+-translocating ATPase (synthase).
    Smigán P; Polák P; Majernik A; Greksák M
    FEBS Lett; 1997 Dec; 420(1):93-6. PubMed ID: 9450556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The presence of H+ and Na(+)-translocating ATPases in Methanobacterium thermoautotrophicum and their possible function under alkaline conditions.
    Smigán P; Majerník A; Polák P; Hapala I; Greksák M
    FEBS Lett; 1995 Sep; 371(2):119-22. PubMed ID: 7672109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. An explanation for the apparent uncoupler insensitivity of ATP synthesis.
    Kaesler B; Schönheit P
    Eur J Biochem; 1988 May; 174(1):189-97. PubMed ID: 2897291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles.
    Friedberg I; Kaback HR
    J Bacteriol; 1980 May; 142(2):651-8. PubMed ID: 7380805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane.
    Schönheit P; Beimborn DB
    Eur J Biochem; 1985 May; 148(3):545-50. PubMed ID: 2986965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria.
    Bott M; Thauer RK
    Eur J Biochem; 1987 Oct; 168(2):407-12. PubMed ID: 2822415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1.
    Becher B; Müller V
    J Bacteriol; 1994 May; 176(9):2543-50. PubMed ID: 8169202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of polyvinyl chloride membrane electrodes sensitive to alkylphosphonium ions for the determination of the electrical difference (delta psi) of Streptococcus mutans and Lactobacillus casei.
    Keevil CW; Hamilton IR
    Anal Biochem; 1984 May; 139(1):228-36. PubMed ID: 6430121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of two different Na+/H+ antiport systems in alkaliphilic Bacillus sp. strain C-125.
    Kitada M; Hashimoto M; Kudo T; Horikoshi K
    J Bacteriol; 1994 Nov; 176(21):6464-9. PubMed ID: 7961397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla.
    Efiok BJ; Webster DA
    Biochemistry; 1990 May; 29(19):4734-9. PubMed ID: 2372555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanogenesis and ATP synthesis in a protoplast system of Methanobacterium thermoautotrophicum.
    Mountfort DO; Mörschel E; Beimborn DB; Schönheit P
    J Bacteriol; 1986 Nov; 168(2):892-900. PubMed ID: 3782030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial energetics at high pH: what happens to the H+ cycle when the extracellular H+ concentration decreases?
    Skulachev VP
    Novartis Found Symp; 1999; 221():200-13; discussion 213-7. PubMed ID: 10207921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The presence of H+ and Na+ -linked Ca2+ extruding systems in Methanobacterium thermoautotrophicum.
    Varecka L; Smigán P; Greksák M
    FEBS Lett; 1996 Dec; 399(1-2):171-4. PubMed ID: 8980145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical analysis of neomycin-resistance in the methanoarchaeon Methanothermobacter thermautotrophicus and some implications for energetic processes in this strain.
    Majerník A; Cubonová L; Polák P; Smigán P; Greksák M
    Anaerobe; 2003 Feb; 9(1):31-8. PubMed ID: 16887685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.