BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

818 related articles for article (PubMed ID: 11271971)

  • 1. Examination of the neighborhood activation theory in normal and hearing-impaired listeners.
    Dirks DD; Takayanagi S; Moshfegh A; Noffsinger PD; Fausti SA
    Ear Hear; 2001 Feb; 22(1):1-13. PubMed ID: 11271971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lexical factors on word recognition among normal-hearing and hearing-impaired listeners.
    Dirks DD; Takayana S; Moshfegh A
    J Am Acad Audiol; 2001 May; 12(5):233-44. PubMed ID: 11392435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lexical and talker effects on word recognition among native and non-native listeners with normal and impaired hearing.
    Takayanagi S; Dirks DD; Moshfegh A
    J Speech Lang Hear Res; 2002 Jun; 45(3):585-97. PubMed ID: 12069010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lexical effects on spoken word recognition performance among Mandarin-speaking children with normal hearing and cochlear implants.
    Wang NM; Wu CM; Kirk KI
    Int J Pediatr Otorhinolaryngol; 2010 Aug; 74(8):883-90. PubMed ID: 20846499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standard-Chinese Lexical Neighborhood Test in normal-hearing young children.
    Liu C; Liu S; Zhang N; Yang Y; Kong Y; Zhang L
    Int J Pediatr Otorhinolaryngol; 2011 Jun; 75(6):774-81. PubMed ID: 21458862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of lexically controlled words and sentences by children with normal hearing and children with cochlear implants.
    Eisenberg LS; Martinez AS; Holowecky SR; Pogorelsky S
    Ear Hear; 2002 Oct; 23(5):450-62. PubMed ID: 12411778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lexical effects on spoken-word recognition in children with normal hearing.
    Krull V; Choi S; Kirk KI; Prusick L; French B
    Ear Hear; 2010 Feb; 31(1):102-14. PubMed ID: 19701087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling open-set spoken word recognition in postlingually deafened adults after cochlear implantation: some preliminary results with the neighborhood activation model.
    Meyer TA; Frisch SA; Pisoni DB; Miyamoto RT; Svirsky MA
    Otol Neurotol; 2003 Jul; 24(4):612-20. PubMed ID: 12851554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Carhart Memorial Lecture, American Auditory Society, Salt Lake City, Utah 1996. Phoneme and word recognition for words in isolation and in sentences.
    Olsen WO; Van Tasell DJ; Speaks CE
    Ear Hear; 1997 Jun; 18(3):175-88. PubMed ID: 9201453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sentence recognition materials based on frequency of word use and lexical confusability.
    Bell TS; Wilson RH
    J Am Acad Audiol; 2001; 12(10):514-22. PubMed ID: 11791938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrupted Monosyllabic Words: The Effects of Ten Interruption Locations on Recognition Performance by Older Listeners with Sensorineural Hearing Loss.
    Wilson RH; Sharrett KC
    J Am Acad Audiol; 2017 Jan; 28(1):68-79. PubMed ID: 28054913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizing spoken words: the neighborhood activation model.
    Luce PA; Pisoni DB
    Ear Hear; 1998 Feb; 19(1):1-36. PubMed ID: 9504270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative evaluation of lexical status, word frequency, and neighborhood density as context effects in spoken word recognition.
    Benki JR
    J Acoust Soc Am; 2003 Mar; 113(3):1689-705. PubMed ID: 12656401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception of temporally processed speech by listeners with hearing impairment.
    Calandruccio L; Doherty KA; Carney LH; Kikkeri HN
    Ear Hear; 2007 Aug; 28(4):512-23. PubMed ID: 17609613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of stimulus variability on speech perception in listeners with hearing impairment.
    Kirk KI; Pisoni DB; Miyamoto RC
    J Speech Lang Hear Res; 1997 Dec; 40(6):1395-405. PubMed ID: 9430759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of high frequencies to speech recognition in quiet and noise in listeners with varying degrees of high-frequency sensorineural hearing loss.
    Amos NE; Humes LE
    J Speech Lang Hear Res; 2007 Aug; 50(4):819-34. PubMed ID: 17675588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech perception in children with cochlear implants: effects of lexical difficulty, talker variability, and word length.
    Kirk KI; Hay-McCutcheon M; Sehgal ST; Miyamoto RT
    Ann Otol Rhinol Laryngol Suppl; 2000 Dec; 185():79-81. PubMed ID: 11141016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children With Normal Hearing: A Replication and Extension of ).
    Roman AS; Pisoni DB; Kronenberger WG; Faulkner KF
    Ear Hear; 2017; 38(3):344-356. PubMed ID: 28045787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.