These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 11272009)

  • 1. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment.
    Garbisu C; Alkorta I
    Bioresour Technol; 2001 May; 77(3):229-36. PubMed ID: 11272009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation: a technology using green plants to remove contaminants from polluted areas.
    Garbisu C; Hernández-Allica J; Barrutia O; Alkorta I; Becerril JM
    Rev Environ Health; 2002; 17(3):173-88. PubMed ID: 12462482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.
    Salt DE; Blaylock M; Kumar NP; Dushenkov V; Ensley BD; Chet I; Raskin I
    Biotechnology (N Y); 1995 May; 13(5):468-74. PubMed ID: 9634787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction of toxic metals: a review of biological mechanisms.
    Lasat MM
    J Environ Qual; 2002; 31(1):109-20. PubMed ID: 11837415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of heavy metals from soils.
    McIntyre T
    Adv Biochem Eng Biotechnol; 2003; 78():97-123. PubMed ID: 12674400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.
    Mahar A; Wang P; Ali A; Awasthi MK; Lahori AH; Wang Q; Li R; Zhang Z
    Ecotoxicol Environ Saf; 2016 Apr; 126():111-121. PubMed ID: 26741880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.
    Kim SH; Lee IS
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):255-9. PubMed ID: 19806283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils.
    Ghazaryan KA; Movsesyan HS; Minkina TM; Sushkova SN; Rajput VD
    Environ Geochem Health; 2021 Apr; 43(4):1327-1335. PubMed ID: 31140132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies.
    Chaney RL; Angle JS; Broadhurst CL; Peters CA; Tappero RV; Sparks DL
    J Environ Qual; 2007; 36(5):1429-43. PubMed ID: 17766822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.
    Cheraghi M; Lorestani B; Khorasani N; Yousefi N; Karami M
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1133-41. PubMed ID: 19319488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendroremediation of heavy metal polluted soils.
    González-Oreja JA; Rozas MA; Alkorta I; Garbisu C
    Rev Environ Health; 2008; 23(3):223-34. PubMed ID: 19119687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation--a novel and promising approach for environmental clean-up.
    Suresh B; Ravishankar GA
    Crit Rev Biotechnol; 2004; 24(2-3):97-124. PubMed ID: 15493528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.
    Rajkumar M; Ae N; Freitas H
    Chemosphere; 2009 Sep; 77(2):153-60. PubMed ID: 19647283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agro-improving method of phytoextracting heavy metal contaminated soil.
    Wei S; Teixeira da Silva JA; Zhou Q
    J Hazard Mater; 2008 Feb; 150(3):662-8. PubMed ID: 17582683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation potential of wild plants growing on soil contaminated with heavy metals.
    Čudić V; Stojiljković D; Jovović A
    Arh Hig Rada Toksikol; 2016 Sep; 67(3):229-239. PubMed ID: 27749263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration.
    Tandy S; Schulin R; Nowack B
    Environ Sci Technol; 2006 Apr; 40(8):2753-8. PubMed ID: 16683619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.