These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 11272268)
1. Chronic granulomatous disease: more than the lack of superoxide? Geiszt M; Kapus A; Ligeti E J Leukoc Biol; 2001 Feb; 69(2):191-6. PubMed ID: 11272268 [TBL] [Abstract][Full Text] [Related]
2. Severe clinical forms of cytochrome b-negative chronic granulomatous disease (X91-) in 3 brothers with a point mutation in the promoter region of CYBB. Stasia MJ; Brion JP; Boutonnat J; Morel F J Infect Dis; 2003 Nov; 188(10):1593-604. PubMed ID: 14624387 [TBL] [Abstract][Full Text] [Related]
3. Consequences of the electrogenic function of the phagocytic NADPH oxidase. Rada BK; Geiszt M; Hably C; Ligeti E Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2293-300. PubMed ID: 16321799 [TBL] [Abstract][Full Text] [Related]
4. The search for a genetic defect in Polish patients with chronic granulomatous disease. Jurkowska M; Kurenko-Deptuch M; Bal J; Roos D Arch Immunol Ther Exp (Warsz); 2004; 52(6):441-6. PubMed ID: 15577746 [TBL] [Abstract][Full Text] [Related]
5. Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Bylund J; Brown KL; Movitz C; Dahlgren C; Karlsson A Free Radic Biol Med; 2010 Dec; 49(12):1834-45. PubMed ID: 20870019 [TBL] [Abstract][Full Text] [Related]
8. [The X+ chronic granulomatous disease as a fabulous model to study the NADPH oxidase complex activation]. Stasia MJ Med Sci (Paris); 2007 May; 23(5):526-32. PubMed ID: 17502070 [TBL] [Abstract][Full Text] [Related]
9. Thapsigargin and flavin adenine dinucleotide ex vivo treatment rescues trafficking-defective gp91phox in chronic granulomatous disease leukocytes. Huang YF; Liu SY; Yen CL; Yang PW; Shieh CC Free Radic Biol Med; 2009 Oct; 47(7):932-40. PubMed ID: 19631269 [TBL] [Abstract][Full Text] [Related]
11. Expansion of genetically corrected neutrophils in chronic granulomatous disease mice by cotransferring a therapeutic gene and a selective amplifier gene. Hara T; Kume A; Hanazono Y; Mizukami H; Okada T; Tsurumi H; Moriwaki H; Ueda Y; Hasegawa M; Ozawa K Gene Ther; 2004 Sep; 11(18):1370-7. PubMed ID: 15229634 [TBL] [Abstract][Full Text] [Related]
12. Chronic granulomatous disease. Dinauer MC; Orkin SH Annu Rev Med; 1992; 43():117-24. PubMed ID: 1316094 [TBL] [Abstract][Full Text] [Related]
13. Skewing of X-chromosome inactivation in three generations of carriers with X-linked chronic granulomatous disease within one family. Köker MY; Sanal O; de Boer M; Tezcan I; Metin A; Tan C; Ersoy F; Roos D Eur J Clin Invest; 2006 Apr; 36(4):257-64. PubMed ID: 16620288 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of a novel splice site mutation within the CYBB gene leading to X-linked chronic granulomatous disease. Barese CN; Copelli SB; De Matteo E; Zandomeni R; Salgueiro F; Di Giovanni D; Heyworth P; Rivas EM Pediatr Blood Cancer; 2005 Apr; 44(4):420-2. PubMed ID: 15468310 [TBL] [Abstract][Full Text] [Related]
18. Monoclonal antibody CL5 recognizes the amino terminal domain of human phagocyte flavocytochrome b558 large subunit, gp91phox. Baniulis D; Burritt JB; Taylor RM; Dinauer MC; Heyworth PG; Parkos CA; Magnusson KE; Jesaitis AJ Eur J Haematol; 2005 Apr; 74(4):337-47. PubMed ID: 15777347 [TBL] [Abstract][Full Text] [Related]
19. A novel mutation in NCF1 in an adult CGD patient with a liver abscess as first presentation. van de Vosse E; van Wengen A; van Geelen JA; de Boer M; Roos D; van Dissel JT J Hum Genet; 2009 Jun; 54(6):313-6. PubMed ID: 19329991 [TBL] [Abstract][Full Text] [Related]