These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11272537)

  • 1. Catalytic two-electron reductions of N2O and N3- by myoglobin in surfactant films.
    Bayachou M; Elkbir L; Farmer PJ
    Inorg Chem; 2000 Jan; 39(2):289-93. PubMed ID: 11272537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic reductions of nitrite, nitric oxide, and nitrous oxide by thermophilic cytochrome P450 CYP119 in film-modified electrodes and an analytical comparison of its catalytic activities with myoglobin.
    Immoos CE; Chou J; Bayachou M; Blair E; Greaves J; Farmer PJ
    J Am Chem Soc; 2004 Apr; 126(15):4934-42. PubMed ID: 15080699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoglobin as an efficient electrocatalyst for nitromethane reduction.
    Boutros J; Bayachou M
    Inorg Chem; 2004 Jun; 43(13):3847-53. PubMed ID: 15206865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme release in myoglobin-DDAB films and its role in electrochemical NO reduction.
    de Groot MT; Merkx M; Koper MT
    J Am Chem Soc; 2005 Nov; 127(46):16224-32. PubMed ID: 16287313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical behavior of biocatalytical composite based on heme-proteins, didodecyldimethylammonium bromide and room-temperature ionic liquid.
    Xu Y; Hu C; Hu S
    Anal Chim Acta; 2010 Mar; 663(1):19-26. PubMed ID: 20172091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer between myoglobin and electrodes in thin films of phosphatidylcholines and dihexadecylphosphate.
    Zhang Z; Rusling JF
    Biophys Chem; 1997 Jan; 63(2-3):133-46. PubMed ID: 9108688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the higher order harmonic components derived from large-amplitude Fourier transformed ac voltammetry of myoglobin and heme in DDAB films at a pyrolytic graphite electrode.
    Lee CY; Bond AM
    Langmuir; 2010 Apr; 26(7):5243-53. PubMed ID: 20232815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt and pH effects on electrochemistry of myoglobin in thick films of a bilayer-forming surfactant.
    Nassar AE; Rusling JF; Kumosinski TF
    Biophys Chem; 1997 Sep; 67(1-3):107-16. PubMed ID: 9397521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules.
    Nassar AE; Willis WS; Rusling JF
    Anal Chem; 1995 Jul; 67(14):2386-92. PubMed ID: 8686876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemistry and electrocatalysis of myoglobin immobilized inĀ sulfonated graphene oxide and Nafion films.
    Chen G; Sun H; Hou S
    Anal Biochem; 2016 Jun; 502():43-49. PubMed ID: 27019153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of myoglobin layer-by-layer films with poly(propyleneimine) dendrimer-stabilized gold nanoparticles and its application in electrochemical biosensing.
    Zhang H; Hu N
    Biosens Bioelectron; 2007 Oct; 23(3):393-9. PubMed ID: 17561388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes.
    Zhang H; Lu H; Hu N
    J Phys Chem B; 2006 Feb; 110(5):2171-9. PubMed ID: 16471801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct electrochemistry of hemoglobin and myoglobin at didodecyldimethylammonium bromide-modified powder microelectrode and application for electrochemical detection of nitric oxide.
    Guo Z; Chen J; Liu H; Cha C
    Anal Chim Acta; 2008 Jan; 607(1):30-6. PubMed ID: 18155406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electron-transfer of myoglobin within a new zwitterionic gemini surfactant film and its analytical application for H2O2 detection.
    Wang F; Hu S
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):262-8. PubMed ID: 18321683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin.
    Shi F; Xi J; Hou F; Han L; Li G; Gong S; Chen C; Sun W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():450-7. PubMed ID: 26478332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin layered myoglobin-polyion films functional and stable at acidic pH values.
    Panchagnula V; Kumar CV; Rusling JF
    J Am Chem Soc; 2002 Oct; 124(42):12515-21. PubMed ID: 12381195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loading of myoglobin into multilayer films assembled by ZrO2 nanoparticles and phytic acid: electrochemistry and electrocatalysis.
    Yang L; Liu H; Hu N
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2442-9. PubMed ID: 19437988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films.
    Huang H; Hu N; Zeng Y; Zhou G
    Anal Biochem; 2002 Sep; 308(1):141-51. PubMed ID: 12234475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions.
    Zhao X; Yeung N; Russell BS; Garner DK; Lu Y
    J Am Chem Soc; 2006 May; 128(21):6766-7. PubMed ID: 16719438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer-by-layer films of hemoglobin or myoglobin assembled with zeolite particles: electrochemistry and electrocatalysis.
    Xie Y; Liu H; Hu N
    Bioelectrochemistry; 2007 May; 70(2):311-9. PubMed ID: 16731050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.