These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11272700)

  • 1. The configurational dependence of binding free energies: a Poisson-Boltzmann study of Neuraminidase inhibitors.
    Woods CJ; King MA; Essex JW
    J Comput Aided Mol Des; 2001 Feb; 15(2):129-44. PubMed ID: 11272700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions.
    Froloff N; Windemuth A; Honig B
    Protein Sci; 1997 Jun; 6(6):1293-301. PubMed ID: 9194189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into susceptibility of antiviral drugs against the E119G mutant of 2009 influenza A (H1N1) neuraminidase by molecular dynamics simulations and free energy calculations.
    Pan P; Li L; Li Y; Li D; Hou T
    Antiviral Res; 2013 Nov; 100(2):356-64. PubMed ID: 24055835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM; Degliesposti G; Sgobba M; Rastelli G
    Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK.
    Kasper P; Christen P; Gehring H
    Proteins; 2000 Aug; 40(2):185-92. PubMed ID: 10842335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding constants of neuraminidase inhibitors: An investigation of the linear interaction energy method.
    Wall ID; Leach AR; Salt DW; Ford MG; Essex JW
    J Med Chem; 1999 Dec; 42(25):5142-52. PubMed ID: 10602699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization?
    Michel J; Verdonk ML; Essex JW
    J Med Chem; 2006 Dec; 49(25):7427-39. PubMed ID: 17149872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved pairwise decomposable finite-difference Poisson-Boltzmann method for computational protein design.
    Vizcarra CL; Zhang N; Marshall SA; Wingreen NS; Zeng C; Mayo SL
    J Comput Chem; 2008 May; 29(7):1153-62. PubMed ID: 18074340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics and free energy analysis of neuraminidase-ligand interactions.
    Bonnet P; Bryce RA
    Protein Sci; 2004 Apr; 13(4):946-57. PubMed ID: 15044728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.
    Nguyen DD; Wang B; Wei GW
    J Comput Chem; 2017 May; 38(13):941-948. PubMed ID: 28211071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One- and two-body decomposable Poisson-Boltzmann methods for protein design calculations.
    Marshall SA; Vizcarra CL; Mayo SL
    Protein Sci; 2005 May; 14(5):1293-304. PubMed ID: 15802649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Docking study and binding free energy calculation of poly (ADP-ribose) polymerase inhibitors.
    Ohno K; Mitsui T; Tanida Y; Matsuura A; Fujitani H; Niimi T; Orita M
    J Mol Model; 2011 Feb; 17(2):383-9. PubMed ID: 20480380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses.
    Singh A; Soliman ME
    Drug Des Devel Ther; 2015; 9():4137-54. PubMed ID: 26257512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking and 3D QSAR study of thiourea analogs as potent inhibitors of influenza virus neuraminidase.
    Sun J; Cai S; Mei H; Li J; Yan N; Wang Y
    J Mol Model; 2010 Dec; 16(12):1809-18. PubMed ID: 20213331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grid-Based Surface Generalized Born Model for Calculation of Electrostatic Binding Free Energies.
    Forouzesh N; Izadi S; Onufriev AV
    J Chem Inf Model; 2017 Oct; 57(10):2505-2513. PubMed ID: 28786669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf.
    Gohlke H; Case DA
    J Comput Chem; 2004 Jan; 25(2):238-50. PubMed ID: 14648622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the binding energy for small molecules, peptides and proteins.
    Schapira M; Totrov M; Abagyan R
    J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of binding affinities for TIBO inhibitors of HIV-1 reverse transcriptase using Monte Carlo simulations in a linear response method.
    Smith RH; Jorgensen WL; Tirado-Rives J; Lamb ML; Janssen PA; Michejda CJ; Kroeger Smith MB
    J Med Chem; 1998 Dec; 41(26):5272-86. PubMed ID: 9857095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.