These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11272803)

  • 1. Histochemical differentiation of autometallographically traceable metals (Au, Ag, Hg, Bi, Zn): protocols for chemical removal of separate autometallographic metal clusters in Epon sections.
    Stoltenberg M; Danscher G
    Histochem J; 2000 Nov; 32(11):645-52. PubMed ID: 11272803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bismuth autometallography: protocol, specificity, and differentiation.
    Danscher G; Stoltenberg M; Kemp K; Pamphlett R
    J Histochem Cytochem; 2000 Nov; 48(11):1503-10. PubMed ID: 11036093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles.
    Danscher G; Stoltenberg M
    Prog Histochem Cytochem; 2006; 41(2):57-139. PubMed ID: 16949439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy.
    Danscher G
    Histochemistry; 1981; 71(1):1-16. PubMed ID: 6785259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autometallography. A new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides).
    Danscher G
    Histochemistry; 1984; 81(4):331-5. PubMed ID: 6511487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural autometallography: a method for silver amplification of catalytic metals.
    Danscher G; Rytter Nørgaard JO
    J Histochem Cytochem; 1985 Jul; 33(7):706-10. PubMed ID: 4008918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification.
    Danscher G; Stoltenberg M; Juhl S
    Neuropathol Appl Neurobiol; 1994 Oct; 20(5):454-67. PubMed ID: 7845531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topochemistry of trace metals in nasal mucosa. Potentialities of some histochemical methods and energy dispersive X-ray microanalysis.
    Torjussen W; Haug FM; Olsen A; Andersen I
    Acta Histochem; 1978; 63(1):11-25. PubMed ID: 105552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autometallography: tissue metals demonstrated by a silver enhancement kit.
    Danscher G; Nørgaard JO; Baatrup E
    Histochemistry; 1987; 86(5):465-9. PubMed ID: 3583820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles.
    Danscher G
    Histochem J; 1996 May; 28(5):361-73. PubMed ID: 8818683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autometallographic silver enhancement of zinc sulfide crystals created in cryostat sections from human brain biopsies: a new technique that makes it feasible to demonstrate zinc ions in tissue sections from biopsies and early autopsy material.
    Danscher G; Juhl S; Stoltenberg M; Krunderup B; Schrøder HD; Andreasen A
    J Histochem Cytochem; 1997 Nov; 45(11):1503-10. PubMed ID: 9358852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of silver-enhanced mercury and gold in tissue sections of rat dorsal root ganglia.
    Schiønning JD; Danscher G; Christensen MM; Ernst E; Møller-Madsen B
    Histochem J; 1993 Feb; 25(2):107-11. PubMed ID: 8468184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autometallographic detection of silver in hypothalamic neurons of rats exposed to silver nitrate.
    Stoltenberg M; Juhl S; Poulsen EH; Ernst E
    J Appl Toxicol; 1994; 14(4):275-80. PubMed ID: 7963240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of autometallography to heavy metal toxicology.
    Danscher G
    Pharmacol Toxicol; 1991 Jun; 68(6):414-23. PubMed ID: 1891437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of autometallographic detection of mercury in the rat kidney.
    Nørgaard JO; Ernst E; Juhl S
    Histochem J; 1994 Feb; 26(2):100-2. PubMed ID: 8150658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bismuth ions are metabolized into autometallographic traceable bismuth-sulphur quantum dots.
    Stoltenberg M; Juhl S; Danscher G
    Eur J Histochem; 2007; 51(1):53-7. PubMed ID: 17548269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of histochemically visualized mercury and silver.
    Danscher G; Rungby J
    Histochem J; 1986; 18(2-3):109-14. PubMed ID: 3733462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histochemical localization of autometallographically detectable mercury in tissues of the immune system from mice exposed to mercuric chloride.
    Christensen MM
    Histochem J; 1996 Mar; 28(3):217-25. PubMed ID: 8735289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn.
    Shi D; Wang WX
    Environ Pollut; 2004 Nov; 132(2):265-77. PubMed ID: 15312939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc-specific autometallographic in vivo selenium methods: tracing of zinc-enriched (ZEN) terminals, ZEN pathways, and pools of zinc ions in a multitude of other ZEN cells.
    Danscher G; Stoltenberg M
    J Histochem Cytochem; 2005 Feb; 53(2):141-53. PubMed ID: 15684327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.