These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 11273717)

  • 1. Inward rectifiers in the heart: an update on I(K1).
    Lopatin AN; Nichols CG
    J Mol Cell Cardiol; 2001 Apr; 33(4):625-38. PubMed ID: 11273717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current.
    Dhamoon AS; Pandit SV; Sarmast F; Parisian KR; Guha P; Li Y; Bagwe S; Taffet SM; Anumonwo JM
    Circ Res; 2004 May; 94(10):1332-9. PubMed ID: 15087421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel.
    Lu Z; MacKinnon R
    Nature; 1994 Sep; 371(6494):243-6. PubMed ID: 7915826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions.
    Ponce-Balbuena D; López-Izquierdo A; Ferrer T; Rodríguez-Menchaca AA; Aréchiga-Figueroa IA; Sánchez-Chapula JA
    J Pharmacol Exp Ther; 2009 Nov; 331(2):563-73. PubMed ID: 19654266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inward rectifier potassium currents as a target for atrial fibrillation therapy.
    Ehrlich JR
    J Cardiovasc Pharmacol; 2008 Aug; 52(2):129-35. PubMed ID: 18670367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of inward rectifier K+ channels by shift of intracellular pH dependence.
    Collins A; Larson M
    J Cell Physiol; 2005 Jan; 202(1):76-86. PubMed ID: 15389543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium.
    Szentadrassy N; Banyasz T; Biro T; Szabo G; Toth BI; Magyar J; Lazar J; Varro A; Kovacs L; Nanasi PP
    Cardiovasc Res; 2005 Mar; 65(4):851-60. PubMed ID: 15721865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Kir2.1 channel populations with different sensitivities to Mg(2+) and polyamine block: a model for the cardiac strong inward rectifier K(+) channel.
    Yan DH; Ishihara K
    J Physiol; 2005 Mar; 563(Pt 3):725-44. PubMed ID: 15618275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 channels.
    Gómez R; Caballero R; Barana A; Amorós I; Calvo E; López JA; Klein H; Vaquero M; Osuna L; Atienza F; Almendral J; Pinto A; Tamargo J; Delpón E
    Circ Res; 2009 Aug; 105(4):383-92. PubMed ID: 19608980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation--a simulation study.
    Kharche S; Garratt CJ; Boyett MR; Inada S; Holden AV; Hancox JC; Zhang H
    Prog Biophys Mol Biol; 2008; 98(2-3):186-97. PubMed ID: 19041665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of potassium channels in the hearts of transgenic and mutant mice with altered polyamine biosynthesis.
    Lopatin AN; Shantz LM; Mackintosh CA; Nichols CG; Pegg AE
    J Mol Cell Cardiol; 2000 Nov; 32(11):2007-24. PubMed ID: 11040105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel inwardly rectifying K+ channel, Kir2.5, is upregulated under chronic cold stress in fish cardiac myocytes.
    Hassinen M; Paajanen V; Vornanen M
    J Exp Biol; 2008 Jul; 211(Pt 13):2162-71. PubMed ID: 18552306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternation of inwardly rectifying background K+ channel during development of rat fetal cardiomyocytes.
    Nagashima M; Tohse N; Kimura K; Yamada Y; Fujii N; Yabu H
    J Mol Cell Cardiol; 2001 Mar; 33(3):533-43. PubMed ID: 11181021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretch-induced alterations of human Kir2.1 channel currents.
    He Y; Xiao J; Yang Y; Zhou Q; Zhang Z; Pan Q; Liu Y; Chen Y
    Biochem Biophys Res Commun; 2006 Dec; 351(2):462-7. PubMed ID: 17067550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac strong inward rectifier potassium channels.
    Anumonwo JM; Lopatin AN
    J Mol Cell Cardiol; 2010 Jan; 48(1):45-54. PubMed ID: 19703462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression.
    Miake J; Marbán E; Nuss HB
    J Clin Invest; 2003 May; 111(10):1529-36. PubMed ID: 12750402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis.
    Dhamoon AS; Jalife J
    Heart Rhythm; 2005 Mar; 2(3):316-24. PubMed ID: 15851327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action potential clamp fingerprints of K+ currents in canine cardiomyocytes: their role in ventricular repolarization.
    Bányász T; Magyar J; Szentandrássy N; Horváth B; Birinyi P; Szentmiklósi J; Nánási PP
    Acta Physiol (Oxf); 2007 Jul; 190(3):189-98. PubMed ID: 17394574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of I Kr and I K1 to ventricular repolarization in canine and human myocytes: is there any influence of action potential duration?
    Jost N; Acsai K; Horváth B; Bányász T; Baczkó I; Bitay M; Bogáts G; Nánási PP
    Basic Res Cardiol; 2009 Jan; 104(1):33-41. PubMed ID: 18604626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacology of cardiac potassium channels.
    Tamargo J; Caballero R; Gómez R; Valenzuela C; Delpón E
    Cardiovasc Res; 2004 Apr; 62(1):9-33. PubMed ID: 15023549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.