These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11273808)

  • 21. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel.
    Henningsson P; Spedding GR; Hedenström A
    J Exp Biol; 2008 Mar; 211(Pt 5):717-30. PubMed ID: 18281334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wingbeat frequency and the body drag anomaly: wind-tunnel observations on a thrush nightingale (Luscinia luscinia) and a teal (Anas crecca).
    Pennycuick C; Klaassen M; Kvist A; LindstrÖM Å
    J Exp Biol; 1996; 199(Pt 12):2757-65. PubMed ID: 9320660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flight style of the black-billed magpie: variation in wing kinematics, neuromuscular control, and muscle composition.
    Tobalske BW; Olson NE; Dial KP
    J Exp Zool; 1997 Nov; 279(4):313-29. PubMed ID: 9360313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vane emargination of outer tail feathers improves flight manoeuvrability in streamerless hirundines, Hirundinidae.
    Matyjasiak P; Matyjasiak J; de Lope F; Møller AP
    Proc Biol Sci; 2004 Sep; 271(1550):1831-8. PubMed ID: 15315899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New model of flap-gliding flight.
    Sachs G
    J Theor Biol; 2015 Jul; 377():110-6. PubMed ID: 25841702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energetics of free existence in swallows and martins (hirundinidae) during breeding: a comparative study using doubly labeled water.
    Westerterp KR; Bryant DM
    Oecologia; 1984 Jun; 62(3):376-381. PubMed ID: 28310891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contractile activity of the pectoralis in the zebra finch according to mode and velocity of flap-bounding flight.
    Tobalske BW; Puccinelli LA; Sheridan DC
    J Exp Biol; 2005 Aug; 208(Pt 15):2895-901. PubMed ID: 16043594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How do birds' tails work? Delta-wing theory fails to predict tail shape during flight.
    Evans MR; Rosén M; Park KJ; Hedenström A
    Proc Biol Sci; 2002 May; 269(1495):1053-7. PubMed ID: 12028763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical versus physiological determinants of swimming speeds in diving Brünnich's guillemots.
    Lovvorn JR; Croll DA; Liggins GA
    J Exp Biol; 1999 Jul; 202(Pt 13):1741-52. PubMed ID: 10359677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria).
    Hedrick TL; Tobalske BW; Biewener AA
    J Exp Biol; 2002 May; 205(Pt 10):1389-409. PubMed ID: 11976351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL; Taylor GK; Thomas AL
    Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinematic control of male Allen's hummingbird wing trill over a range of flight speeds.
    Clark CJ; Mistick EA
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29776995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordination of wingbeat and respiration in birds. II. "Fictive" flight.
    Funk GD; Steeves JD; Milsom WK
    J Appl Physiol (1985); 1992 Sep; 73(3):1025-33. PubMed ID: 1400013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaling bat wingbeat frequency and amplitude.
    Bullen RD; McKenzie NL
    J Exp Biol; 2002 Sep; 205(Pt 17):2615-26. PubMed ID: 12151367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous measurements of three-dimensional trajectories and wingbeat frequencies of birds in the field.
    Ling H; Mclvor GE; Nagy G; MohaimenianPour S; Vaughan RT; Thornton A; Ouellette NT
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30355809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanics and behavior of cliff swallows during tandem flights.
    Shelton RM; Jackson BE; Hedrick TL
    J Exp Biol; 2014 Aug; 217(Pt 15):2717-25. PubMed ID: 24855672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stress and strain in the flight muscles as constraints on the evolution of flying animals.
    Pennycuick CJ
    J Biomech; 1996 May; 29(5):577-81. PubMed ID: 8707783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of wingbeat frequency and amplitude in flight power.
    Krishnan K; Garde B; Bennison A; Cole NC; Cole EL; Darby J; Elliott KH; Fell A; Gómez-Laich A; de Grissac S; Jessopp M; Lempidakis E; Mizutani Y; Prudor A; Quetting M; Quintana F; Robotka H; Roulin A; Ryan PG; Schalcher K; Schoombie S; Tatayah V; Tremblay F; Weimerskirch H; Whelan S; Wikelski M; Yoda K; Hedenström A; Shepard ELC
    J R Soc Interface; 2022 Aug; 19(193):20220168. PubMed ID: 36000229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.