These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 11274101)
21. An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum. Reynolds CM; Meyer J; Poole LB Biochemistry; 2002 Feb; 41(6):1990-2001. PubMed ID: 11827546 [TBL] [Abstract][Full Text] [Related]
22. Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion. Ritz D; Lim J; Reynolds CM; Poole LB; Beckwith J Science; 2001 Oct; 294(5540):158-60. PubMed ID: 11588261 [TBL] [Abstract][Full Text] [Related]
23. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579. Wang L; Chong H; Jiang R Appl Microbiol Biotechnol; 2012 Dec; 96(5):1265-73. PubMed ID: 22311647 [TBL] [Abstract][Full Text] [Related]
24. NADH oxidase and alkyl hydroperoxide reductase subunit C (peroxiredoxin) from Amphibacillus xylanus form an oligomeric assembly. Arai T; Kimata S; Mochizuki D; Hara K; Zako T; Odaka M; Yohda M; Arisaka F; Kanamaru S; Matsumoto T; Yajima S; Sato J; Kawasaki S; Niimura Y FEBS Open Bio; 2015; 5():124-31. PubMed ID: 25737838 [TBL] [Abstract][Full Text] [Related]
26. Essential role of the flexible linker on the conformational equilibrium of bacterial peroxiredoxin reductase for effective regeneration of peroxiredoxin. Kamariah N; Eisenhaber B; Eisenhaber F; Grüber G J Biol Chem; 2017 Apr; 292(16):6667-6679. PubMed ID: 28270505 [TBL] [Abstract][Full Text] [Related]
27. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Jönsson TJ; Ellis HR; Poole LB Biochemistry; 2007 May; 46(19):5709-21. PubMed ID: 17441733 [TBL] [Abstract][Full Text] [Related]
28. Cloning, overexpression, and characterization of peroxiredoxin and NADH peroxiredoxin reductase from Thermus aquaticus. Logan C; Mayhew SG J Biol Chem; 2000 Sep; 275(39):30019-28. PubMed ID: 10862622 [TBL] [Abstract][Full Text] [Related]
29. Taxonomical and physiological comparisons of the three species of the genus Amphibacillus. Arai T; Yanahashi S; Sato J; Sato T; Ishikawa M; Koizumi Y; Kawasaki S; Niimura Y; Nakagawa J J Gen Appl Microbiol; 2009 Apr; 55(2):155-62. PubMed ID: 19436132 [TBL] [Abstract][Full Text] [Related]
30. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. Baker LM; Raudonikiene A; Hoffman PS; Poole LB J Bacteriol; 2001 Mar; 183(6):1961-73. PubMed ID: 11222594 [TBL] [Abstract][Full Text] [Related]
32. Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase. Li Calzi M; Poole LB Biochemistry; 1997 Oct; 36(43):13357-64. PubMed ID: 9341228 [TBL] [Abstract][Full Text] [Related]
33. Mitochondrial hydrogen peroxide formation and the fumarate reductase of Hymenolepis diminuta. Fioravanti CF; Reisig JM J Parasitol; 1990 Aug; 76(4):457-63. PubMed ID: 2380854 [TBL] [Abstract][Full Text] [Related]
34. Adaptation of Hydrogenobacter thermophilus toward oxidative stress triggered by high expression of alkyl hydroperoxide reductase. Sato Y; Arai H; Igarashi Y; Ishii M Biosci Biotechnol Biochem; 2014; 78(9):1619-22. PubMed ID: 25209512 [TBL] [Abstract][Full Text] [Related]
35. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. Jacobson FS; Morgan RW; Christman MF; Ames BN J Biol Chem; 1989 Jan; 264(3):1488-96. PubMed ID: 2643600 [TBL] [Abstract][Full Text] [Related]
36. Crystallization and preliminary crystallographic analysis of an NADH oxidase that functions in peroxide reduction in Thermus aquaticus YT-1. Mac Sweeney A; D'Arcy A; Higgins TM; Mayhew SG; Toomey D; Walsh MA Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):297-8. PubMed ID: 10089430 [TBL] [Abstract][Full Text] [Related]
37. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Poole LB Arch Biochem Biophys; 2005 Jan; 433(1):240-54. PubMed ID: 15581580 [TBL] [Abstract][Full Text] [Related]
38. Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate Anaerobe bacteroides fragilis. Rocha ER; Smith CJ J Bacteriol; 1999 Sep; 181(18):5701-10. PubMed ID: 10482511 [TBL] [Abstract][Full Text] [Related]
39. Purification, characterization and properties of an NADH oxidase from Desulfovibrio vulgaris (Hildenborough) and its coupling to adenylyl phosphosulfate reductase. Chen L; Le Gall J; Xavier AV Biochem Biophys Res Commun; 1994 Sep; 203(2):839-44. PubMed ID: 8093065 [TBL] [Abstract][Full Text] [Related]
40. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, Alkyl hydroperoxide reductase and Thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. La Carbona S; Sauvageot N; Giard JC; Benachour A; Posteraro B; Auffray Y; Sanguinetti M; Hartke A Mol Microbiol; 2007 Dec; 66(5):1148-63. PubMed ID: 17971082 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]