These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 11274109)

  • 1. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis.
    Ali NO; Bignon J; Rapoport G; Debarbouille M
    J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription in the acetoin catabolic pathway is regulated by AcoR and CcpA in Bacillus thuringiensis.
    Peng Q; Zhao X; Wen J; Huang M; Zhang J; Song F
    Microbiol Res; 2020 May; 235():126438. PubMed ID: 32088504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An acetoin-regulated expression system of Bacillus subtilis.
    Silbersack J; Jürgen B; Hecker M; Schneidinger B; Schmuck R; Schweder T
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):895-903. PubMed ID: 16944132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of acoR, a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16.
    Krüger N; Steinbüchel A
    J Bacteriol; 1992 Jul; 174(13):4391-400. PubMed ID: 1378052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis.
    Debarbouille M; Gardan R; Arnaud M; Rapoport G
    J Bacteriol; 1999 Apr; 181(7):2059-66. PubMed ID: 10094682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA.
    Grundy FJ; Turinsky AJ; Henkin TM
    J Bacteriol; 1994 Aug; 176(15):4527-33. PubMed ID: 7913927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis.
    Turinsky AJ; Moir-Blais TR; Grundy FJ; Henkin TM
    J Bacteriol; 2000 Oct; 182(19):5611-4. PubMed ID: 10986270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA.
    Tojo S; Satomura T; Morisaki K; Deutscher J; Hirooka K; Fujita Y
    Mol Microbiol; 2005 Jun; 56(6):1560-73. PubMed ID: 15916606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system.
    Krüger N; Oppermann FB; Lorenzl H; Steinbüchel A
    J Bacteriol; 1994 Jun; 176(12):3614-30. PubMed ID: 8206840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6).
    Puri-Taneja A; Paul S; Chen Y; Hulett FM
    J Bacteriol; 2006 Feb; 188(4):1266-78. PubMed ID: 16452408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite repression of the citST two-component system in Bacillus subtilis.
    Repizo GD; Blancato VS; Sender PD; Lolkema J; Magni C
    FEMS Microbiol Lett; 2006 Jul; 260(2):224-31. PubMed ID: 16842348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals.
    Wise AA; Price CW
    J Bacteriol; 1995 Jan; 177(1):123-33. PubMed ID: 8002610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription factor AlsR binds and regulates the promoter of the alsSD operon responsible for acetoin formation in Bacillus subtilis.
    Frädrich C; March A; Fiege K; Hartmann A; Jahn D; Härtig E
    J Bacteriol; 2012 Mar; 194(5):1100-12. PubMed ID: 22178965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis.
    Yoshida KI; Fujita Y; Ehrlich SD
    J Bacteriol; 2000 Oct; 182(19):5454-61. PubMed ID: 10986249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postexponential regulation of sin operon expression in Bacillus subtilis.
    Shafikhani SH; Mandic-Mulec I; Strauch MA; Smith I; Leighton T
    J Bacteriol; 2002 Jan; 184(2):564-71. PubMed ID: 11751836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis.
    Zhang X; Zhang R; Bao T; Yang T; Xu M; Li H; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1067-76. PubMed ID: 23836140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism.
    Choi SK; Saier MH
    J Bacteriol; 2005 Oct; 187(19):6856-61. PubMed ID: 16166551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.