BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 11274440)

  • 1. Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons.
    Golshani P; Liu XB; Jones EG
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4172-7. PubMed ID: 11274440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective loss of AMPA receptors at corticothalamic synapses in the epileptic stargazer mouse.
    Barad Z; Shevtsova O; Arbuthnott GW; Leitch B
    Neuroscience; 2012 Aug; 217():19-31. PubMed ID: 22609941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrary roles of kainate receptors in transmitter release at corticothalamic synapses onto thalamic relay and reticular neurons.
    Miyata M; Imoto K
    J Physiol; 2009 Mar; 587(Pt 5):999-1012. PubMed ID: 19124541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different composition of glutamate receptors in corticothalamic and lemniscal synaptic responses and their roles in the firing responses of ventrobasal thalamic neurons in juvenile mice.
    Miyata M; Imoto K
    J Physiol; 2006 Aug; 575(Pt 1):161-74. PubMed ID: 16777934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two classes of excitatory synaptic responses in rat thalamic reticular neurons.
    Deleuze C; Huguenard JR
    J Neurophysiol; 2016 Sep; 116(3):995-1011. PubMed ID: 27281752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential synaptic distribution of AMPA receptor subunits in the ventral posterior and reticular thalamic nuclei of the rat.
    Mineff EM; Weinberg RJ
    Neuroscience; 2000; 101(4):969-82. PubMed ID: 11113346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced NMDA receptor-dependent thalamic excitation and network oscillations in stargazer mice.
    Lacey CJ; Bryant A; Brill J; Huguenard JR
    J Neurosci; 2012 Aug; 32(32):11067-81. PubMed ID: 22875939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progression of change in NMDA, non-NMDA, and metabotropic glutamate receptor function at the developing corticothalamic synapse.
    Golshani P; Warren RA; Jones EG
    J Neurophysiol; 1998 Jul; 80(1):143-54. PubMed ID: 9658036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive Synaptic Normalization and Input Synchrony-Dependent Amplification of Cortical Feedback in Thalamocortical Neuron Dendrites.
    Connelly WM; Crunelli V; Errington AC
    J Neurosci; 2016 Mar; 36(13):3735-54. PubMed ID: 27030759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolactin-releasing peptide enhances synaptic transmission in rat thalamus.
    Xia YF; Arai AC
    Neuroscience; 2011 Jan; 172():1-11. PubMed ID: 21056089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus.
    von Krosigk M; Monckton JE; Reiner PB; McCormick DA
    Neuroscience; 1999; 91(1):7-20. PubMed ID: 10336055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired transmission at corticothalamic excitatory inputs and intrathalamic GABAergic synapses in the ventrobasal thalamus of heterozygous BDNF knockout mice.
    Laudes T; Meis S; Munsch T; Lessmann V
    Neuroscience; 2012 Oct; 222():215-27. PubMed ID: 22796079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thalamic organization and function after Cajal.
    Jones EG
    Prog Brain Res; 2002; 136():333-57. PubMed ID: 12143393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
    Kao CQ; Coulter DA
    J Neurophysiol; 1997 May; 77(5):2661-76. PubMed ID: 9163382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticothalamic inhibition in the thalamic reticular nucleus.
    Zhang L; Jones EG
    J Neurophysiol; 2004 Feb; 91(2):759-66. PubMed ID: 14586030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex.
    Destexhe A
    J Physiol Paris; 2000; 94(5-6):391-410. PubMed ID: 11165908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA Receptor Expression in the Thalamus of the Stargazer Model of Absence Epilepsy.
    Barad Z; Grattan DR; Leitch B
    Sci Rep; 2017 Feb; 7():42926. PubMed ID: 28220891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental changes in AMPA and kainate receptor-mediated quantal transmission at thalamocortical synapses in the barrel cortex.
    Bannister NJ; Benke TA; Mellor J; Scott H; Gürdal E; Crabtree JW; Isaac JT
    J Neurosci; 2005 May; 25(21):5259-71. PubMed ID: 15917466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells.
    Destexhe A; Contreras D; Steriade M
    J Neurophysiol; 1998 Feb; 79(2):999-1016. PubMed ID: 9463458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse.
    Seol M; Kuner T
    Eur J Neurosci; 2015 Dec; 42(12):3033-44. PubMed ID: 26390982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.