These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 11274553)
1. Digital optical imaging of green fluorescent proteins for tracking vascular gene expression: feasibility study in rabbit and human cell models. Yang X; Liu H; Li D; Zhou X; Jung WC; Deans AE; Cui Y; Cheng L Radiology; 2001 Apr; 219(1):171-5. PubMed ID: 11274553 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of in vivo multichannel optical imaging of gene expression: experimental study in mice. Mahmood U; Tung CH; Tang Y; Weissleder R Radiology; 2002 Aug; 224(2):446-51. PubMed ID: 12147841 [TBL] [Abstract][Full Text] [Related]
3. Visualization of intrathoracically disseminated solid tumors in mice with optical imaging by telomerase-specific amplification of a transferred green fluorescent protein gene. Umeoka T; Kawashima T; Kagawa S; Teraishi F; Taki M; Nishizaki M; Kyo S; Nagai K; Urata Y; Tanaka N; Fujiwara T Cancer Res; 2004 Sep; 64(17):6259-65. PubMed ID: 15342413 [TBL] [Abstract][Full Text] [Related]
4. Targeting of green fluorescent protein expression to the cell surface. Simonova M; Weissleder R; Sergeyev N; Vilissova N; Bogdanov A Biochem Biophys Res Commun; 1999 Sep; 262(3):638-42. PubMed ID: 10471377 [TBL] [Abstract][Full Text] [Related]
5. Radiofrequency-enhanced vascular gene transduction and expression for intravascular MR imaging-guided therapy: feasibility study in pigs. Du X; Qiu B; Zhan X; Kolmakova A; Gao F; Hofmann LV; Cheng L; Chatterjee S; Yang X Radiology; 2005 Sep; 236(3):939-44. PubMed ID: 16040894 [TBL] [Abstract][Full Text] [Related]
6. Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Cheng L; Fu J; Tsukamoto A; Hawley RG Nat Biotechnol; 1996 May; 14(5):606-9. PubMed ID: 9630951 [TBL] [Abstract][Full Text] [Related]
7. Tracking RPE transplants labeled by retroviral gene transfer with green fluorescent protein. Lai CC; Gouras P; Doi K; Lu F; Kjeldbye H; Goff SP; Pawliuk R; Leboulch P; Tsang SH Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2141-6. PubMed ID: 10440271 [TBL] [Abstract][Full Text] [Related]
8. Transgene delivery of plasmid DNA to smooth muscle cells and macrophages from a biostable polymer-coated stent. Takahashi A; Palmer-Opolski M; Smith RC; Walsh K Gene Ther; 2003 Aug; 10(17):1471-8. PubMed ID: 12900762 [TBL] [Abstract][Full Text] [Related]
9. Expression and analysis of green fluorescent proteins in human embryonic kidney cells by capillary electrophoresis. Malek A; Khaledi MG Anal Biochem; 1999 Mar; 268(2):262-9. PubMed ID: 10075816 [TBL] [Abstract][Full Text] [Related]
10. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
11. GFP biofluorescence: imaging gene expression and protein dynamics in living cells. Design considerations for a fluorescence imaging laboratory. Goodwin PC Methods Cell Biol; 1999; 58():343-67. PubMed ID: 9891390 [No Abstract] [Full Text] [Related]
13. [In-vivo tracing of bone marrow stromal cell differentiating into chondrocytes by green fluorescent protein gene transfection]. Zhou GD; Wang XY; Liu DL; Cui L; Liu W; Cao YL Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2004 Jan; 20(1):27-30. PubMed ID: 15182615 [TBL] [Abstract][Full Text] [Related]
14. Adenovirus-mediated expression of green fluorescent protein. de Martin R; Raidl M; Hofer E; Binder BR Gene Ther; 1997 May; 4(5):493-5. PubMed ID: 9274728 [TBL] [Abstract][Full Text] [Related]
15. In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy. Al-Gubory KH; Houdebine LM Eur J Cell Biol; 2006 Aug; 85(8):837-45. PubMed ID: 16781011 [TBL] [Abstract][Full Text] [Related]
16. Fluorescent photoreceptors of transgenic Xenopus laevis imaged in vivo by two microscopy techniques. Moritz OL; Tam BM; Knox BE; Papermaster DS Invest Ophthalmol Vis Sci; 1999 Dec; 40(13):3276-80. PubMed ID: 10586953 [TBL] [Abstract][Full Text] [Related]
17. Catheter-based in vivo imaging of enzyme activity and gene expression: feasibility study in mice. Funovics MA; Weissleder R; Mahmood U Radiology; 2004 Jun; 231(3):659-66. PubMed ID: 15163807 [TBL] [Abstract][Full Text] [Related]
18. [Labeling of liver cancer cell for fluorescence imaging study by far-red fluorescence protein reporter gene mKate2]. Li D; Shen M; Zhang B; Li ZR; Pang PF; Zhu KS; Wang J; Huang MS; Meng XC; Shan H Zhonghua Yi Xue Za Zhi; 2011 May; 91(19):1344-7. PubMed ID: 21756763 [TBL] [Abstract][Full Text] [Related]
19. Single-molecule imaging of fluorescent proteins expressed in living cells. Hibino K; Hiroshima M; Takahashi M; Sako Y Methods Mol Biol; 2009; 544():451-60. PubMed ID: 19488718 [TBL] [Abstract][Full Text] [Related]
20. [Experimental study on the effect of vascular endothelial growth factor 165 gene on vascularization of dermal substitute]. Meng QN; Zhao DM; Chen JG; Tan Q Zhonghua Shao Shang Za Zhi; 2012 Oct; 28(5):353-8. PubMed ID: 23290761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]