These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11274817)

  • 21. The Influence of Wet Granulation Parameters on the Compaction Behavior and Tablet Strength of a Hydralazine Powder Mixture.
    Macho O; Gabrišová Ľ; Guštafík A; Jezso K; Juriga M; Kabát J; Blaško J
    Pharmaceutics; 2023 Aug; 15(8):. PubMed ID: 37631362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of process parameters on compressibility of granulation manufactured in a high-shear mixer.
    Badawy SI; Menning MM; Gorko MA; Gilbert DL
    Int J Pharm; 2000 Mar; 198(1):51-61. PubMed ID: 10722950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compression of lactose, glucose and mannitol granules.
    Juppo AM; Kervinen L; Yliruusi J; Kristoffersson E
    J Pharm Pharmacol; 1995 Jul; 47(7):543-9. PubMed ID: 8568618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemometric evaluation of pharmaceutical properties of antipyrine granules by near-infrared spectroscopy.
    Otsuka M; Mouri Y; Matsuda Y
    AAPS PharmSciTech; 2003; 4(3):E47. PubMed ID: 14621979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous twin screw extrusion for the wet granulation of lactose.
    Keleb EI; Vermeire A; Vervaet C; Remon JP
    Int J Pharm; 2002 Jun; 239(1-2):69-80. PubMed ID: 12052692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J; Alderborn G
    J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of granules produced by high-shear and fluidized-bed granulation methods.
    Morin G; Briens L
    AAPS PharmSciTech; 2014 Aug; 15(4):1039-48. PubMed ID: 24839117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An investigation into the usefulness of different empirical modeling techniques for better control of spray-on fluidized bed melt granulation.
    Aleksić I; Đuriš J; Ibrić S; Parojčić J
    Int J Pharm; 2015 Dec; 496(2):627-35. PubMed ID: 26551673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A study on the effect of wet granulation on microcrystalline cellulose particle structure and performance.
    Badawy SI; Gray DB; Hussain MA
    Pharm Res; 2006 Mar; 23(3):634-40. PubMed ID: 16382277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of starting material particle size on its agglomeration behavior in high shear wet granulation.
    Badawy SI; Hussain MA
    AAPS PharmSciTech; 2004 May; 5(3):e38. PubMed ID: 15760071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluid bed granulation of a poorly water soluble, low density, micronized drug: comparison with high shear granulation.
    Gao JZ; Jain A; Motheram R; Gray DB; Hussain MA
    Int J Pharm; 2002 Apr; 237(1-2):1-14. PubMed ID: 11955799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous twin screw granulation: influence of process variables on granule and tablet quality.
    Vercruysse J; Córdoba Díaz D; Peeters E; Fonteyne M; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2012 Sep; 82(1):205-11. PubMed ID: 22687571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.
    Gabbott IP; Al Husban F; Reynolds GK
    Eur J Pharm Biopharm; 2016 Sep; 106():70-8. PubMed ID: 27016211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation.
    Grote S; Kleinebudde P
    Pharm Dev Technol; 2019 Mar; 24(3):314-322. PubMed ID: 29757067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of wet granulation process parameters using response surface methodology. 1. Top-spray fluidized bed.
    Lipps DM; Sakr AM
    J Pharm Sci; 1994 Jul; 83(7):937-47. PubMed ID: 7965672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of tabletability via twin-screw melt granulation: Focus on binder distribution.
    Steffens KE; Wagner KG
    Int J Pharm; 2019 Oct; 570():118649. PubMed ID: 31472217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.
    Vanhoorne V; Bekaert B; Peeters E; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2016 Jun; 506(1-2):13-24. PubMed ID: 27094358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Melt granulation in fluidized bed: a comparative study of spray-on versus in situ procedure.
    Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Srčič S
    Drug Dev Ind Pharm; 2014 Jan; 40(1):23-32. PubMed ID: 23294368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of tabletting speed on compactibility and compressibility of two direct compressible powders under high speed compression.
    Ishino R; Yoshino H; Hirakawa Y; Noda K
    Chem Pharm Bull (Tokyo); 1990 Jul; 38(7):1987-92. PubMed ID: 2268901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manufacturability and Properties of Granules and Tablets Using the Eco-Friendly Granulation Method Green Fluidized Bed Granulation Compared to Direct Compression.
    Ishikawa A; Takasaki H; Sakurai A; Katayama T; Wada K; Furuishi T; Fukuzawa K; Obata Y; Yonemochi E
    Chem Pharm Bull (Tokyo); 2021; 69(5):447-455. PubMed ID: 33952855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.