These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 11275530)
1. Optimization of facilitation related to threshold in transcranial magnetic stimulation. Han TR; Kim JH; Lim JY Clin Neurophysiol; 2001 Apr; 112(4):593-9. PubMed ID: 11275530 [TBL] [Abstract][Full Text] [Related]
2. Physiological processes influencing motor-evoked potential duration with voluntary contraction. van den Bos MA; Geevasinga N; Menon P; Burke D; Kiernan MC; Vucic S J Neurophysiol; 2017 Mar; 117(3):1156-1162. PubMed ID: 28031404 [TBL] [Abstract][Full Text] [Related]
3. 5 Hz Repetitive Transcranial Magnetic Stimulation with Maximum Voluntary Muscle Contraction Facilitates Cerebral Cortex Excitability of Normal Subjects. Yin Z; Shen Y; Reinhardt JD; Chen CF; Jiang X; Dai W; Zhang W; Machado S; Arias-Carrion O; Yuan TF; Shan C CNS Neurol Disord Drug Targets; 2015; 14(10):1298-303. PubMed ID: 26556078 [TBL] [Abstract][Full Text] [Related]
4. Postexercise facilitation of motor evoked potentials following transcranial magnetic stimulation: a study in normal subjects. Balbi P; Perretti A; Sannino M; Marcantonio L; Santoro L Muscle Nerve; 2002 Mar; 25(3):448-52. PubMed ID: 11870725 [TBL] [Abstract][Full Text] [Related]
5. Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris. Temesi J; Gruet M; Rupp T; Verges S; Millet GY J Neuroeng Rehabil; 2014 Mar; 11():40. PubMed ID: 24655366 [TBL] [Abstract][Full Text] [Related]
6. Time-dependent changes in motor cortical excitability by electrical stimulation combined with voluntary drive. Sugawara K; Yamaguchi T; Tanabe S; Suzuki T; Saito K; Higashi T Neuroreport; 2014 Apr; 25(6):404-9. PubMed ID: 24356108 [TBL] [Abstract][Full Text] [Related]
7. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study. McKay WB; Tuel SM; Sherwood AM; Stokić DS; Dimitrijević MR Exp Brain Res; 1995; 105(2):276-82. PubMed ID: 7498380 [TBL] [Abstract][Full Text] [Related]
8. Corticospinal excitability of the biceps brachii is shoulder position dependent. Collins BW; Cadigan EWJ; Stefanelli L; Button DC J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295 [TBL] [Abstract][Full Text] [Related]
9. The effect of shoulder position on motor evoked and maximal muscle compound action potentials of the biceps brachii. Collins BW; Button DC Neurosci Lett; 2018 Feb; 665():206-211. PubMed ID: 29229395 [TBL] [Abstract][Full Text] [Related]
11. Remote facilitation of supraspinal motor excitability depends on the level of effort. Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593 [TBL] [Abstract][Full Text] [Related]
12. Effect of contraction strength on responses in biceps brachii and adductor pollicis to transcranial magnetic stimulation. Taylor JL; Allen GM; Butler JE; Gandevia SC Exp Brain Res; 1997 Dec; 117(3):472-8. PubMed ID: 9438716 [TBL] [Abstract][Full Text] [Related]
13. Mechanomyographic response to transcranial magnetic stimulation from biceps brachii and during transcutaneous electrical nerve stimulation on extensor carpi radialis. Reza MF; Ikoma K; Chuma T; Mano Y J Neurosci Methods; 2005 Dec; 149(2):164-71. PubMed ID: 16026847 [TBL] [Abstract][Full Text] [Related]
14. Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity. Talis VL; Kazennikov OV; Castellote JM; Grishin AA; Ioffe ME Exp Brain Res; 2014 Mar; 232(3):803-10. PubMed ID: 24309748 [TBL] [Abstract][Full Text] [Related]
15. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation. Bachasson D; Temesi J; Gruet M; Yokoyama K; Rupp T; Millet GY; Verges S Neuroscience; 2016 Feb; 314():125-33. PubMed ID: 26642805 [TBL] [Abstract][Full Text] [Related]
16. Effect of fatiguing maximal voluntary contraction on excitatory and inhibitory responses elicited by transcranial magnetic motor cortex stimulation. McKay WB; Stokic DS; Sherwood AM; Vrbova G; Dimitrijevic MR Muscle Nerve; 1996 Aug; 19(8):1017-24. PubMed ID: 8756168 [TBL] [Abstract][Full Text] [Related]
17. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Hunter SK; McNeil CJ; Butler JE; Gandevia SC; Taylor JL Exp Brain Res; 2016 Sep; 234(9):2541-51. PubMed ID: 27165508 [TBL] [Abstract][Full Text] [Related]
18. Effect of stimulus intensity and voluntary contraction on corticospinal potentials following transcranial magnetic stimulation. Kaneko K; Kawai S; Fuchigami Y; Shiraishi G; Ito T J Neurol Sci; 1996 Jul; 139(1):131-6. PubMed ID: 8836984 [TBL] [Abstract][Full Text] [Related]
19. Impaired facilitation of motor evoked potentials in incomplete spinal cord injury. Diehl P; Kliesch U; Dietz V; Curt A J Neurol; 2006 Jan; 253(1):51-7. PubMed ID: 16044213 [TBL] [Abstract][Full Text] [Related]
20. Stimulus strength related effect of transcranial magnetic stimulation on maximal voluntary contraction force of human quadriceps femoris muscle. Urbach D; Awiszus F Exp Brain Res; 2002 Jan; 142(1):25-31. PubMed ID: 11797081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]