BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11275566)

  • 1. HMG box A in HMG2 protein functions as a mediator of DNA structural alteration together with box B.
    Nakamura Y; Yoshioka K; Shirakawa H; Yoshida M
    J Biochem; 2001 Apr; 129(4):643-51. PubMed ID: 11275566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in DNA recognition and conformational change activity between boxes A and B in HMG2 protein.
    Yoshioka Ki; Saito K; Tanabe T; Yamamoto A; Ando Y; Nakamura Y; Shirakawa H; Yoshida M
    Biochemistry; 1999 Jan; 38(2):589-95. PubMed ID: 9888798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the acidic tail on the DNA-binding properties of the HMG1,2 class of proteins: insights from tail switching and tail removal.
    Lee KB; Thomas JO
    J Mol Biol; 2000 Nov; 304(2):135-49. PubMed ID: 11080451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of large nucleoprotein complexes upon binding of the high-mobility-group (HMG) box B-domain of HMG1 protein to supercoiled DNA.
    Stros M; Reich J
    Eur J Biochem; 1998 Jan; 251(1-2):427-34. PubMed ID: 9492314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential binding of HMG1, HMG2, and a single HMG box to cisplatin-damaged DNA.
    Farid RS; Bianchi ME; Falciola L; Engelsberg BN; Billings PC
    Toxicol Appl Pharmacol; 1996 Dec; 141(2):532-9. PubMed ID: 8975778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the DNA-binding properties of the HMG-box domains of HMG1 and the sex-determining factor SRY.
    Teo SH; Grasser KD; Thomas JO
    Eur J Biochem; 1995 Jun; 230(3):943-50. PubMed ID: 7601157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unwinding of DNA by nonhistone protein HMG1 and HMG2.
    Yoshida M; Makiguchi K; Chida Y; Shimura K
    Nucleic Acids Symp Ser; 1984; (15):181-4. PubMed ID: 6097882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel activity of HMG domains: promotion of the triple-stranded complex formation between DNA containing (GGA/TCC)11 and d(GGA)11 oligonucleotides.
    Suda T; Mishima Y; Takayanagi K; Asakura H; Odani S; Kominami R
    Nucleic Acids Res; 1996 Dec; 24(23):4733-40. PubMed ID: 8972860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role of basic residues and the putative intercalating phenylalanine of the HMG-1 box B in DNA supercoiling and binding to four-way DNA junctions.
    Stros M; Muselíková E
    J Biol Chem; 2000 Nov; 275(46):35699-707. PubMed ID: 10962007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures.
    Paull TT; Haykinson MJ; Johnson RC
    Genes Dev; 1993 Aug; 7(8):1521-34. PubMed ID: 8339930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA bending by the chromosomal protein HMG1 and its high mobility group box domains. Effect of flanking sequences.
    Stros M
    J Biol Chem; 1998 Apr; 273(17):10355-61. PubMed ID: 9553091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of intercalating residues in chromosomal high-mobility-group protein DNA binding, bending and specificity.
    Klass J; Murphy FV; Fouts S; Serenil M; Changela A; Siple J; Churchill ME
    Nucleic Acids Res; 2003 Jun; 31(11):2852-64. PubMed ID: 12771212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unwinding of DNA by nonhistone chromosomal protein HMG(1 + 2) from pig thymus as determined with endonuclease.
    Yoshida M; Shimura K
    J Biochem; 1984 Jan; 95(1):117-24. PubMed ID: 6323390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HMG box proteins bind to four-way DNA junctions in their open conformation.
    P-ohler JR; Norman DG; Bramham J; Bianchi ME; Lilley DM
    EMBO J; 1998 Feb; 17(3):817-26. PubMed ID: 9451006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear accumulation of HMG2 protein is mediated by basic regions interspaced with a long DNA-binding sequence, and retention within the nucleus requires the acidic carboxyl terminus.
    Shirakawa H; Tanigawa T; Sugiyama S; Kobayashi M; Terashima T; Yoshida K; Arai T; Yoshida M
    Biochemistry; 1997 May; 36(20):5992-9. PubMed ID: 9166769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-binding properties of the recombinant high-mobility-group-like AT-hook-containing region from human BRG1 protein.
    Singh M; D'Silva L; Holak TA
    Biol Chem; 2006; 387(10-11):1469-78. PubMed ID: 17081121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Difference in affinity for DNA between HMG proteins 1 and 2 determined by surface plasmon resonance measurements.
    Yamamoto A; Ando Y; Yoshioka K; Saito K; Tanabe T; Shirakawa H; Yoshida M
    J Biochem; 1997 Sep; 122(3):586-94. PubMed ID: 9348088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural requirements for cooperative binding of HMG1 to DNA minicircles.
    Webb M; Payet D; Lee KB; Travers AA; Thomas JO
    J Mol Biol; 2001 May; 309(1):79-88. PubMed ID: 11491303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for SRY-dependent 46-X,Y sex reversal: modulation of DNA bending by a naturally occurring point mutation.
    Murphy EC; Zhurkin VB; Louis JM; Cornilescu G; Clore GM
    J Mol Biol; 2001 Sep; 312(3):481-99. PubMed ID: 11563911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonhistone proteins HMG1 and HMG2 unwind DNA double helix.
    Javaherian K; Sadeghi M; Liu LF
    Nucleic Acids Res; 1979 Aug; 6(11):3569-80. PubMed ID: 226939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.