These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11276031)

  • 1. Analysis of change in the presence of informative censoring: application to a longitudinal clinical trial of progressive renal disease.
    Schluchter MD; Greene T; Beck GJ
    Stat Med; 2001 Apr; 20(7):989-1007. PubMed ID: 11276031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional mixed models adjusting for non-ignorable drop-out with administrative censoring in longitudinal studies.
    Li J; Schluchter MD
    Stat Med; 2004 Nov; 23(22):3489-503. PubMed ID: 15505888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shared parameter models for the joint analysis of longitudinal data and event times.
    Vonesh EF; Greene T; Schluchter MD
    Stat Med; 2006 Jan; 25(1):143-63. PubMed ID: 16025541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: A simulation study.
    Pantazis N; Touloumi G
    Stat Med; 2007 Dec; 26(30):5473-85. PubMed ID: 18058854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Missing covariates in longitudinal data with informative dropouts: bias analysis and inference.
    Roy J; Lin X
    Biometrics; 2005 Sep; 61(3):837-46. PubMed ID: 16135036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal analysis of performance of estimated glomerular filtration rate as renal function declines in chronic kidney disease.
    Lee D; Levin A; Roger SD; McMahon LP
    Nephrol Dial Transplant; 2009 Jan; 24(1):109-16. PubMed ID: 18755849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis for the estimation of rates of change with non-ignorable drop-out: an application to a randomized clinical trial of the vitamin D3.
    Matsuyama Y
    Stat Med; 2003 Mar; 22(5):811-27. PubMed ID: 12587107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of two methods for the estimation of precision with incomplete longitudinal data, jointly modelled with a time-to-event outcome.
    Touloumi G; Babiker AG; Kenward MG; Pocock SJ; Darbyshire JH
    Stat Med; 2003 Oct; 22(20):3161-75. PubMed ID: 14518021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out.
    Kurland BF; Heagerty PJ
    Stat Med; 2004 Sep; 23(17):2673-95. PubMed ID: 15316952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slope estimation in the presence of informative right censoring: modeling the number of observations as a geometric random variable.
    Mori M; Woolson RF; Woodworth GG
    Biometrics; 1994 Mar; 50(1):39-50. PubMed ID: 8086614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dietary protein restriction on the progression of kidney disease: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study.
    Levey AS; Greene T; Sarnak MJ; Wang X; Beck GJ; Kusek JW; Collins AJ; Kopple JD
    Am J Kidney Dis; 2006 Dec; 48(6):879-88. PubMed ID: 17162142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs.
    Fitzmaurice GM; Laird NM; Shneyer L
    Stat Med; 2001 Apr; 20(7):1009-21. PubMed ID: 11276032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient estimation for patient-specific rates of disease progression using nonnormal linear mixed models.
    Zhang P; Song PX; Qu A; Greene T
    Biometrics; 2008 Mar; 64(1):29-38. PubMed ID: 17501938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates.
    Parzen M; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Troxel A
    Stat Med; 2006 Aug; 25(16):2784-96. PubMed ID: 16345018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation and comparison of changes in the presence of informative right censoring: conditional linear model.
    Wu MC; Bailey KR
    Biometrics; 1989 Sep; 45(3):939-55. PubMed ID: 2486189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A latent-class mixture model for incomplete longitudinal Gaussian data.
    Beunckens C; Molenberghs G; Verbeke G; Mallinckrodt C
    Biometrics; 2008 Mar; 64(1):96-105. PubMed ID: 17608789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint analysis of longitudinal data with informative right censoring.
    Liu M; Ying Z
    Biometrics; 2007 Jun; 63(2):363-71. PubMed ID: 17425632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data.
    Albert PS; Follmann DA
    Stat Methods Med Res; 2007 Oct; 16(5):417-39. PubMed ID: 17656452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analysis of progression-free survival with dependent withdrawal.
    Ruan PK; Gray RJ
    Stat Med; 2008 Apr; 27(8):1180-98. PubMed ID: 17768718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accounting for dropout bias using mixed-effects models.
    Mallinckrodt CH; Clark WS; David SR
    J Biopharm Stat; 2001; 11(1-2):9-21. PubMed ID: 11459446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.