These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 11276086)
1. Lattice protein folding with two and four-body statistical potentials. Gan HH; Tropsha A; Schlick T Proteins; 2001 May; 43(2):161-74. PubMed ID: 11276086 [TBL] [Abstract][Full Text] [Related]
2. Designability of protein structures: a lattice-model study using the Miyazawa-Jernigan matrix. Li H; Tang C; Wingreen NS Proteins; 2002 Nov; 49(3):403-12. PubMed ID: 12360530 [TBL] [Abstract][Full Text] [Related]
3. Folding and form: insights from lattice simulations. Faisca PF; Telo Da Gama MM; Ball RC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051917. PubMed ID: 15244857 [TBL] [Abstract][Full Text] [Related]
4. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Zhang Y; Kolinski A; Skolnick J Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659 [TBL] [Abstract][Full Text] [Related]
5. Four-body contact potentials derived from two protein datasets to discriminate native structures from decoys. Feng Y; Kloczkowski A; Jernigan RL Proteins; 2007 Jul; 68(1):57-66. PubMed ID: 17393455 [TBL] [Abstract][Full Text] [Related]
6. Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment. Munson PJ; Singh RK Protein Sci; 1997 Jul; 6(7):1467-81. PubMed ID: 9232648 [TBL] [Abstract][Full Text] [Related]
7. Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Betancourt MR; Thirumalai D Protein Sci; 1999 Feb; 8(2):361-9. PubMed ID: 10048329 [TBL] [Abstract][Full Text] [Related]
8. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model. Kolinski A; Skolnick J Proteins; 1998 Sep; 32(4):475-94. PubMed ID: 9726417 [TBL] [Abstract][Full Text] [Related]
9. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins. Rabow AA; Scheraga HA J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272 [TBL] [Abstract][Full Text] [Related]
10. Free energies for coarse-grained proteins by integrating multibody statistical contact potentials with entropies from elastic network models. Zimmermann MT; Leelananda SP; Gniewek P; Feng Y; Jernigan RL; Kloczkowski A J Struct Funct Genomics; 2011 Jul; 12(2):137-47. PubMed ID: 21674234 [TBL] [Abstract][Full Text] [Related]
11. Accurate mean-force pairwise-residue potentials for discrimination of protein folds. Reva BA; Finkelstein AV; Sanner MF; Olson AJ Pac Symp Biocomput; 1997; ():373-84. PubMed ID: 9390307 [TBL] [Abstract][Full Text] [Related]
12. All-Atom Four-Body Knowledge-Based Statistical Potentials to Distinguish Native Protein Structures from Nonnative Folds. Masso M Biomed Res Int; 2017; 2017():5760612. PubMed ID: 29119109 [TBL] [Abstract][Full Text] [Related]
13. Folding simulation of protein models on the structure-based cubo-octahedral lattice with the Contact Interactions algorithm. Toma L; Toma S Protein Sci; 1999 Jan; 8(1):196-202. PubMed ID: 10210197 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic stability and kinetic foldability of a lattice protein model. Li J; Wang J; Zhang J; Wang W J Chem Phys; 2004 Apr; 120(13):6274-87. PubMed ID: 15267515 [TBL] [Abstract][Full Text] [Related]
15. Ab initio protein structure prediction using physicochemical potentials and a simplified off-lattice model. Gibbs N; Clarke AR; Sessions RB Proteins; 2001 May; 43(2):186-202. PubMed ID: 11276088 [TBL] [Abstract][Full Text] [Related]
16. Improving the orientation-dependent statistical potential using a reference state. Liu Y; Zeng J; Gong H Proteins; 2014 Oct; 82(10):2383-93. PubMed ID: 24810843 [TBL] [Abstract][Full Text] [Related]
17. ROTAS: a rotamer-dependent, atomic statistical potential for assessment and prediction of protein structures. Park J; Saitou K BMC Bioinformatics; 2014 Sep; 15(1):307. PubMed ID: 25236673 [TBL] [Abstract][Full Text] [Related]
18. Influence of protein structure databases on the predictive power of statistical pair potentials. Furuichi E; Koehl P Proteins; 1998 May; 31(2):139-49. PubMed ID: 9593188 [TBL] [Abstract][Full Text] [Related]
19. Exploring the fitness landscapes of lattice proteins. Renner A; Bornberg-Bauer E Pac Symp Biocomput; 1997; ():361-72. PubMed ID: 9390306 [TBL] [Abstract][Full Text] [Related]
20. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins. Ortiz AR; Kolinski A; Skolnick J Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]