BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 11276424)

  • 1. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases.
    Aravind L; Koonin EV
    Genome Biol; 2001; 2(3):RESEARCH0007. PubMed ID: 11276424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale examination of functional and sequence diversity of 2-oxoglutarate/Fe(II)-dependent oxygenases in Metazoa.
    Jia B; Tang K; Chun BH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2922-2933. PubMed ID: 28847508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria.
    Jia B; Jia X; Kim KH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):323-334. PubMed ID: 27919802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in protein dynamics of the DNA repair dioxygenase AlkB upon binding of Fe(2+) and 2-oxoglutarate.
    Bleijlevens B; Shivarattan T; van den Boom KS; de Haan A; van der Zwan G; Simpson PJ; Matthews SJ
    Biochemistry; 2012 Apr; 51(16):3334-41. PubMed ID: 22443471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond.
    Fedeles BI; Singh V; Delaney JC; Li D; Essigmann JM
    J Biol Chem; 2015 Aug; 290(34):20734-20742. PubMed ID: 26152727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.
    Iyer LM; Tahiliani M; Rao A; Aravind L
    Cell Cycle; 2009 Jun; 8(11):1698-710. PubMed ID: 19411852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage.
    Sundheim O; Vågbø CB; Bjørås M; Sousa MM; Talstad V; Aas PA; Drabløs F; Krokan HE; Tainer JA; Slupphaug G
    EMBO J; 2006 Jul; 25(14):3389-97. PubMed ID: 16858410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schizosaccharomyces pombe Ofd2 is a nuclear 2-oxoglutarate and iron dependent dioxygenase interacting with histones.
    Korvald H; Mølstad Moe AM; Cederkvist FH; Thiede B; Laerdahl JK; Bjørås M; Alseth I
    PLoS One; 2011; 6(9):e25188. PubMed ID: 21949882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The selectivity and inhibition of AlkB.
    Welford RW; Schlemminger I; McNeill LA; Hewitson KS; Schofield CJ
    J Biol Chem; 2003 Mar; 278(12):10157-61. PubMed ID: 12517755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR studies of the non-haem Fe(II) and 2-oxoglutarate-dependent oxygenases.
    Mbenza NM; Vadakkedath PG; McGillivray DJ; Leung IKH
    J Inorg Biochem; 2017 Dec; 177():384-394. PubMed ID: 28893416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-homologous functions of the AlkB homologs.
    Ougland R; Rognes T; Klungland A; Larsen E
    J Mol Cell Biol; 2015 Dec; 7(6):494-504. PubMed ID: 26003568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of oxygen into the succinate co-product of iron(II) and 2-oxoglutarate dependent oxygenases from bacteria, plants and humans.
    Welford RW; Kirkpatrick JM; McNeill LA; Puri M; Oldham NJ; Schofield CJ
    FEBS Lett; 2005 Sep; 579(23):5170-4. PubMed ID: 16153644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA repair by bacterial AlkB proteins.
    Falnes PØ; Rognes T
    Res Microbiol; 2003 Oct; 154(8):531-8. PubMed ID: 14527653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenomic identification of five new human homologs of the DNA repair enzyme AlkB.
    Kurowski MA; Bhagwat AS; Papaj G; Bujnicki JM
    BMC Genomics; 2003 Dec; 4(1):48. PubMed ID: 14667252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human AlkB homologue 5 is a nuclear 2-oxoglutarate dependent oxygenase and a direct target of hypoxia-inducible factor 1α (HIF-1α).
    Thalhammer A; Bencokova Z; Poole R; Loenarz C; Adam J; O'Flaherty L; Schödel J; Mole D; Giaslakiotis K; Schofield CJ; Hammond EM; Ratcliffe PJ; Pollard PJ
    PLoS One; 2011 Jan; 6(1):e16210. PubMed ID: 21264265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic states of the DNA repair enzyme AlkB regulate product release.
    Bleijlevens B; Shivarattan T; Flashman E; Yang Y; Simpson PJ; Koivisto P; Sedgwick B; Schofield CJ; Matthews SJ
    EMBO Rep; 2008 Sep; 9(9):872-7. PubMed ID: 18617893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB.
    Yu B; Edstrom WC; Benach J; Hamuro Y; Weber PC; Gibney BR; Hunt JF
    Nature; 2006 Feb; 439(7078):879-84. PubMed ID: 16482161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein dynamics control the progression and efficiency of the catalytic reaction cycle of the Escherichia coli DNA-repair enzyme AlkB.
    Ergel B; Gill ML; Brown L; Yu B; Palmer AG; Hunt JF
    J Biol Chem; 2014 Oct; 289(43):29584-601. PubMed ID: 25043760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human 2-oxoglutarate-dependent oxygenases: nutrient sensors, stress responders, and disease mediators.
    Fletcher SC; Coleman ML
    Biochem Soc Trans; 2020 Oct; 48(5):1843-1858. PubMed ID: 32985654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of PHYHD1A, a 2OG oxygenase related to phytanoyl-CoA hydroxylase.
    Zhang Z; Kochan GT; Ng SS; Kavanagh KL; Oppermann U; Schofield CJ; McDonough MA
    Biochem Biophys Res Commun; 2011 May; 408(4):553-8. PubMed ID: 21530488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.