These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 11276524)

  • 1. Periodic and quasi-periodic behavior in resource-dependent age structured population models.
    Dilão R; Domingos T
    Bull Math Biol; 2001 Mar; 63(2):207-30. PubMed ID: 11276524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harvesting in a resource dependent age structured Leslie type population model.
    Dilão R; Domingos T; Shahverdiev EM
    Math Biosci; 2004 Jun; 189(2):141-51. PubMed ID: 15094317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models.
    Block GL; Allen LJ
    Bull Math Biol; 2000 Mar; 62(2):199-228. PubMed ID: 10824427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple attractors in stage-structured population models with birth pulses.
    Tang S; Chen L
    Bull Math Biol; 2003 May; 65(3):479-95. PubMed ID: 12749535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator.
    Nie L; Teng Z; Hu L; Peng J
    Biosystems; 2009 Nov; 98(2):67-72. PubMed ID: 19523503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the stability of separable solutions of a sexual age-structured population dynamics model.
    Skakauskas V
    Math Biosci; 2004 Sep; 191(1):41-67. PubMed ID: 15312743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodicity in an epidemic model with a generalized non-linear incidence.
    Alexander ME; Moghadas SM
    Math Biosci; 2004 May; 189(1):75-96. PubMed ID: 15051415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic dynamics in a two-stage Allee effect model are driven by tension between stage equilibria.
    Gascoigne J; Lipcius RN
    Theor Popul Biol; 2005 Dec; 68(4):237-41. PubMed ID: 15949831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iteroparous reproduction strategies and population dynamics.
    Kooi BW; Hallam TG; Kelpin FD; Krohn CM; Kooijman SA
    Bull Math Biol; 2001 Jul; 63(4):769-94. PubMed ID: 11497167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of density-dependent dispersal in a structured metapopulation.
    Geritz SA; Gyllenberg M; Ondrácek P
    Math Biosci; 2009 Jun; 219(2):142-8. PubMed ID: 19361534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Globally attracting attenuant versus resonant cycles in periodic compensatory Leslie models.
    Franke JE; Yakubu AA
    Math Biosci; 2006 Nov; 204(1):1-20. PubMed ID: 17027038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model.
    Persson L; Leonardsson K; de Roos AM; Gyllenberg M; Christensen B
    Theor Popul Biol; 1998 Dec; 54(3):270-93. PubMed ID: 9878605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On linear perturbations of the Ricker model.
    Braverman E; Kinzebulatov D
    Math Biosci; 2006 Aug; 202(2):323-39. PubMed ID: 16797042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On a periodic-like behavior of a delayed density-dependent branching process.
    Fujimagari T
    Math Biosci; 2007 Mar; 206(1):128-33. PubMed ID: 17070864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Continuous-discrete models of the dynamics of an isolated population and of 2 competing species].
    Nedorezov LV; Nazarov IN
    Zh Obshch Biol; 2000; 61(1):74-86. PubMed ID: 10732490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [On the impact of winter conditions on the dynamics of a population with non-overlapping generations: a model approach].
    Nedorezov LV; Volkova EV
    Zh Obshch Biol; 2005; 66(6):484-90. PubMed ID: 16405192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory dynamics in rock-paper-scissors games with mutations.
    Mobilia M
    J Theor Biol; 2010 May; 264(1):1-10. PubMed ID: 20083126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of a discrete population model for extinction and sustainability in ancient civilizations.
    Basener W; Brooks B; Radin M; Wiandt T
    Nonlinear Dynamics Psychol Life Sci; 2008 Jan; 12(1):29-53. PubMed ID: 18157926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food chain chaos due to transcritical point.
    Deng B; Hines G
    Chaos; 2003 Jun; 13(2):578-85. PubMed ID: 12777122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model.
    Afraimovich V; Tristan I; Huerta R; Rabinovich MI
    Chaos; 2008 Dec; 18(4):043103. PubMed ID: 19123613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.