BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11277075)

  • 1. Genetic control of the cell proliferation-differentiation balance in the developing skull vault: roles of fibroblast growth factor receptor signalling pathways.
    Morriss-Kay GM; Iseki S; Johnson D
    Novartis Found Symp; 2001; 232():102-16; discussion 116-21. PubMed ID: 11277075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault.
    Iseki S; Wilkie AO; Morriss-Kay GM
    Development; 1999 Dec; 126(24):5611-20. PubMed ID: 10572038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2.
    Iseki S; Wilkie AO; Heath JK; Ishimaru T; Eto K; Morriss-Kay GM
    Development; 1997 Sep; 124(17):3375-84. PubMed ID: 9310332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression patterns of Twist and Fgfr1, -2 and -3 in the developing mouse coronal suture suggest a key role for twist in suture initiation and biogenesis.
    Johnson D; Iseki S; Wilkie AO; Morriss-Kay GM
    Mech Dev; 2000 Mar; 91(1-2):341-5. PubMed ID: 10704861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of FGF and TWIST in calvarial bone and suture development.
    Rice DP; Aberg T; Chan Y; Tang Z; Kettunen PJ; Pakarinen L; Maxson RE; Thesleff I
    Development; 2000 May; 127(9):1845-55. PubMed ID: 10751173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms in calvarial bone and suture development, and their relation to craniosynostosis.
    Rice DP; Rice R; Thesleff I
    Eur J Orthod; 2003 Apr; 25(2):139-48. PubMed ID: 12737212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblast growth factors lead to increased Msx2 expression and fusion in calvarial sutures.
    Ignelzi MA; Wang W; Young AT
    J Bone Miner Res; 2003 Apr; 18(4):751-9. PubMed ID: 12674336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts.
    Mansukhani A; Bellosta P; Sahni M; Basilico C
    J Cell Biol; 2000 Jun; 149(6):1297-308. PubMed ID: 10851026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Craniosynostosis: genes and mechanisms.
    Wilkie AO
    Hum Mol Genet; 1997; 6(10):1647-56. PubMed ID: 9300656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an understanding of nonsyndromic craniosynostosis: altered patterns of TGF-beta receptor and FGF receptor expression induced by intrauterine head constraint.
    Hunenko O; Karmacharya J; Ong G; Kirschner RE
    Ann Plast Surg; 2001 May; 46(5):546-53; discussion 553-4. PubMed ID: 11352430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of chondrogenesis in neural crest cells by mutant fibroblast growth factor receptors.
    Petiot A; Ferretti P; Copp AJ; Chan CT
    Dev Dyn; 2002 Jun; 224(2):210-21. PubMed ID: 12112473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ser252Trp fibroblast growth factor receptor-2 (FGFR-2) mutation induces PKC-independent downregulation of FGFR-2 associated with premature calvaria osteoblast differentiation.
    Lemonnier J; Delannoy P; Hott M; Lomri A; Modrowski D; Marie PJ
    Exp Cell Res; 2000 Apr; 256(1):158-67. PubMed ID: 10739663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential distribution of fibroblast growth factor receptors (FGFRs) on foveal cones: FGFR-4 is an early marker of cone photoreceptors.
    Cornish EE; Natoli RC; Hendrickson A; Provis JM
    Mol Vis; 2004 Jan; 10():1-14. PubMed ID: 14737068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive screen of genes implicated in craniosynostosis.
    Johnson D
    Ann R Coll Surg Engl; 2003 Nov; 85(6):371-7. PubMed ID: 14629875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Description of a new mutation and characterization of FGFR1, FGFR2, and FGFR3 mutations among Brazilian patients with syndromic craniosynostoses.
    Passos-Bueno MR; SertiƩ AL; Richieri-Costa A; Alonso LG; Zatz M; Alonso N; Brunoni D; Ribeiro SF
    Am J Med Genet; 1998 Jul; 78(3):237-41. PubMed ID: 9677057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.
    Kim HJ; Rice DP; Kettunen PJ; Thesleff I
    Development; 1998 Apr; 125(7):1241-51. PubMed ID: 9477322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activating (P253R, C278F) and dominant negative mutations of FGFR2: differential effects on calvarial bone cell proliferation, differentiation, and mineralization.
    Ratisoontorn C; Fan GF; McEntee K; Nah HD
    Connect Tissue Res; 2003; 44 Suppl 1():292-7. PubMed ID: 12952211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Craniosynostosis and related limb anomalies.
    Wilkie AO; Oldridge M; Tang Z; Maxson RE
    Novartis Found Symp; 2001; 232():122-33; discussion 133-43. PubMed ID: 11277076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localisation and differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal and atherosclerotic human arteries.
    Hughes SE
    Cardiovasc Res; 1996 Sep; 32(3):557-69. PubMed ID: 8881516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative autoregulation of fibroblast growth factor receptor 2 expression characterizing cranial development in cases of Apert (P253R mutation) and Pfeiffer (C278F mutation) syndromes and suggesting a basis for differences in their cranial phenotypes.
    Britto JA; Moore RL; Evans RD; Hayward RD; Jones BM
    J Neurosurg; 2001 Oct; 95(4):660-73. PubMed ID: 11596961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.