These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 11277087)
1. Genetic control of skeletal development. Karsenty G Novartis Found Symp; 2001; 232():6-17; discussion 17-22. PubMed ID: 11277087 [TBL] [Abstract][Full Text] [Related]
2. Genetics of skeletogenesis. Karsenty G Dev Genet; 1998; 22(4):301-13. PubMed ID: 9664683 [TBL] [Abstract][Full Text] [Related]
3. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Mackie EJ; Ahmed YA; Tatarczuch L; Chen KS; Mirams M Int J Biochem Cell Biol; 2008; 40(1):46-62. PubMed ID: 17659995 [TBL] [Abstract][Full Text] [Related]
4. Histone deacetylases in control of skeletogenesis. Westendorf JJ J Cell Biochem; 2007 Oct; 102(2):332-40. PubMed ID: 17661352 [TBL] [Abstract][Full Text] [Related]
5. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Day TF; Guo X; Garrett-Beal L; Yang Y Dev Cell; 2005 May; 8(5):739-50. PubMed ID: 15866164 [TBL] [Abstract][Full Text] [Related]
6. Bone cell biology: new approaches and unanswered questions. Raisz LG J Bone Miner Res; 1993 Dec; 8 Suppl 2():S457-65. PubMed ID: 8122513 [TBL] [Abstract][Full Text] [Related]
7. VEGFA is necessary for chondrocyte survival during bone development. Zelzer E; Mamluk R; Ferrara N; Johnson RS; Schipani E; Olsen BR Development; 2004 May; 131(9):2161-71. PubMed ID: 15073147 [TBL] [Abstract][Full Text] [Related]
8. Bone development. Olsen BR; Reginato AM; Wang W Annu Rev Cell Dev Biol; 2000; 16():191-220. PubMed ID: 11031235 [TBL] [Abstract][Full Text] [Related]
9. Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo. Lian JB; Balint E; Javed A; Drissi H; Vitti R; Quinlan EJ; Zhang L; Van Wijnen AJ; Stein JL; Speck N; Stein GS J Cell Physiol; 2003 Aug; 196(2):301-11. PubMed ID: 12811823 [TBL] [Abstract][Full Text] [Related]
10. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Zhou H; Mak W; Kalak R; Street J; Fong-Yee C; Zheng Y; Dunstan CR; Seibel MJ Development; 2009 Feb; 136(3):427-36. PubMed ID: 19141672 [TBL] [Abstract][Full Text] [Related]
11. [Development, physiology, and cell activity of bone]. de Baat P; Heijboer MP; de Baat C Ned Tijdschr Tandheelkd; 2005 Jul; 112(7):258-63. PubMed ID: 16047964 [TBL] [Abstract][Full Text] [Related]
12. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Witten PE; Huysseune A Biol Rev Camb Philos Soc; 2009 May; 84(2):315-46. PubMed ID: 19382934 [TBL] [Abstract][Full Text] [Related]
13. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Hill TP; Später D; Taketo MM; Birchmeier W; Hartmann C Dev Cell; 2005 May; 8(5):727-38. PubMed ID: 15866163 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional mechanisms in osteoblast differentiation and bone formation. Nakashima K; de Crombrugghe B Trends Genet; 2003 Aug; 19(8):458-66. PubMed ID: 12902164 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanisms of endochondral bone development. Provot S; Schipani E Biochem Biophys Res Commun; 2005 Mar; 328(3):658-65. PubMed ID: 15694399 [TBL] [Abstract][Full Text] [Related]
16. Balanced regulation of proliferation, growth, differentiation, and degradation in skeletal cells. Blair HC; Sun L; Kohanski RA Ann N Y Acad Sci; 2007 Nov; 1116():165-73. PubMed ID: 17646258 [TBL] [Abstract][Full Text] [Related]