These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 11277252)

  • 1. Estimation of molar heat capacities in solution from gas chromatographic data.
    Héberger K; Görgényi M
    J Chromatogr Sci; 2001 Mar; 39(3):113-20. PubMed ID: 11277252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of Kováts indices in gas chromatography revisited.
    Héberger K; Görgényi M; Kowalska T
    J Chromatogr A; 2002 Oct; 973(1-2):135-42. PubMed ID: 12437171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of interactions between amino acid side chains: experimental differentiation of aromatic-aromatic, aromatic-aliphatic, and aliphatic-aliphatic side-chain interactions in water.
    Pereira de Araujo AF; Pochapsky TC; Joughin B
    Biophys J; 1999 May; 76(5):2319-28. PubMed ID: 10233051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect.
    Makhatadze GI; Privalov PL
    J Mol Biol; 1990 May; 213(2):375-84. PubMed ID: 2342113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Kovats retention indices of some aliphatic aldehydes and ketones on some stationary phases at different temperatures using artificial neural network.
    Konoz E; Fatemi MH; Faraji R
    J Chromatogr Sci; 2008; 46(5):406-12. PubMed ID: 18492350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of the Kováts retention index. The entropy index.
    Görgényi M; Dewulf J; Van Langenhove H
    J Chromatogr A; 2006 Dec; 1137(1):84-90. PubMed ID: 17055518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat Capacity Estimation Using a Complete Set of Homodesmotic Reactions for Organic Compounds.
    Khursan SL
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation molar enthalpies and heat capacities of n-alkanes and n-alkylbenzenes on stationary phases of wide-ranging polarity.
    Lebrón-Aguilar R; Quintanilla-López JE; Santiuste JM
    J Chromatogr A; 2010 Dec; 1217(49):7767-75. PubMed ID: 21040924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat capacities of protein functional groups.
    Makhatadze GI; Lopez MM; Privalov PL
    Biophys Chem; 1997 Feb; 64(1-3):93-101. PubMed ID: 17029831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature effects in hydrophobic interaction chromatography.
    Haidacher D; Vailaya A; Horváth C
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2290-5. PubMed ID: 8637865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of the Kováts retention index. Convex or concave curves.
    Görgényi M; Fekete ZA; Van Langenhove H; Dewulf J
    J Chromatogr A; 2008 Oct; 1206(2):178-85. PubMed ID: 18760787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the combined effect of temperature and organic modifier content on reversed-phase chromatographic retention. Effectiveness of derived models in isocratic and isothermal mode retention prediction.
    Pappa-Louisi A; Nikitas P; Papachristos K; Zisi C
    J Chromatogr A; 2008 Aug; 1201(1):27-34. PubMed ID: 18554606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The partial molar heat capacity and volume of the peptide backbone group of proteins in aqueous solution.
    Häckel M; Hedwig GR; Hin HJ
    Biophys Chem; 1998 Jul; 73(1-2):163-77. PubMed ID: 17029721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low Temperature Heat Capacities and Standard Molar Enthalpy of Formation of 2-Pyrazinecarboxylic Acid (C5H4N2O2)(s).
    Kong YX; Di YY; Yang WW; Gao SL; Tan ZC
    Acta Chim Slov; 2010 Jun; 57(2):370-85. PubMed ID: 24061733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new set of peptide-based group heat capacities for use in protein stability calculations.
    Häckel M; Hinz HJ; Hedwig GR
    J Mol Biol; 1999 Aug; 291(1):197-213. PubMed ID: 10438615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of temperature and mobile phase on the retention of aliphatic carboxylic acids in hydrophilic interaction chromatography on zwitterionic stationary phases.
    Boháčová I; Halko R; Jandera P
    J Sep Sci; 2016 Dec; 39(24):4732-4739. PubMed ID: 27781395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption mechanisms and effect of temperature in reversed-phase liquid chromatography. meaning of the classical Van't Hoff plot in chromatography.
    Gritti F; Guiochon G
    Anal Chem; 2006 Jul; 78(13):4642-53. PubMed ID: 16808477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excess heat capacity in liquid binary alkali-fluoride mixtures.
    Beilmann M; Beneš O; Capelli E; Reuscher V; Konings RJ; Fanghänel T
    Inorg Chem; 2013 Mar; 52(5):2404-11. PubMed ID: 23421448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation enthalpies and heat capacities of n-alkanes in four polymer phases by capillary gas chromatography.
    Görgenyi M; Héberger K
    J Sep Sci; 2005 Apr; 28(6):506-12. PubMed ID: 15881079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.