These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11277304)

  • 21. Streaming potential measurements at low ionic concentrations reflect bone microstructure.
    MacGinitie LA; Seiz KG; Otter MW; Cochran GV
    J Biomech; 1994 Jul; 27(7):969-78. PubMed ID: 8063847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation.
    Kameo Y; Adachi T
    Biomech Model Mechanobiol; 2014 Aug; 13(4):851-60. PubMed ID: 24174063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].
    Rogala P; Uklejewski R; Stryła W
    Chir Narzadow Ruchu Ortop Pol; 2002; 67(3):309-16. PubMed ID: 12238403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A case for bone canaliculi as the anatomical site of strain generated potentials.
    Cowin SC; Weinbaum S; Zeng Y
    J Biomech; 1995 Nov; 28(11):1281-97. PubMed ID: 8522542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.
    Perrin E; Bou-Saïd B; Massi F
    J Mech Behav Biomed Mater; 2019 Mar; 91():373-382. PubMed ID: 30660050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multi-layered poroelastic slab model under cyclic loading for a single osteon.
    Chen Y; Wang W; Ding S; Wang X; Chen Q; Li X
    Biomed Eng Online; 2018 Jul; 17(1):97. PubMed ID: 30016971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis.
    Prendergast PJ; Huiskes R
    J Biomech Eng; 1996 May; 118(2):240-6. PubMed ID: 8738790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simple constitutive model for a cortical bone.
    Krajcinovic D; Trafimow J; Sumarac D
    J Biomech; 1987; 20(8):779-84. PubMed ID: 3654677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comments on 'compact bone: numerical simulation of mechanical characteristics'.
    Zhang N; Fan XJ
    J Biomech; 1996 Dec; 29(12):1673-8. PubMed ID: 8945671
    [No Abstract]   [Full Text] [Related]  

  • 30. The effects of remodeling on the elastic properties of bone.
    Katz JL; Yoon HS; Lipson S; Maharidge R; Meunier A; Christel P
    Calcif Tissue Int; 1984; 36 Suppl 1():S31-6. PubMed ID: 6430520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microelectrode study of stress-generated potentials obtained from uniform and nonuniform compression of human bone.
    Iannacone W; Korostoff E; Pollack SR
    J Biomed Mater Res; 1979 Sep; 13(5):753-63. PubMed ID: 479220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The relationship between elastic properties and microstructure of bovine cortical bone.
    Lipson SF; Katz JL
    J Biomech; 1984; 17(4):231-40. PubMed ID: 6736060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microstructural mechanical study of a transverse osteon under compressive loading: The role of fiber reinforcement and explanation of some geometrical and mechanical microscopic properties.
    De Micheli PO; Witzel U
    J Biomech; 2011 May; 44(8):1588-92. PubMed ID: 21397233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements.
    Qin YX; Lin W; Rubin C
    Ann Biomed Eng; 2002 May; 30(5):693-702. PubMed ID: 12108843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Mechanical response numerical analysis of bone tissue based on liquid saturated biphasic porous medium model].
    Li D; Chen H; Wang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):381-6. PubMed ID: 15250138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of fluid in bone extravascular matrix to strain-rate dependent stiffening of bone tissue - A poroelastic study.
    Le Pense S; Chen Y
    J Mech Behav Biomed Mater; 2017 Jan; 65():90-101. PubMed ID: 27569757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comments on 'On the relationship between the microstructure of bone and its mechanical stiffness'.
    Zioupos P; Currey JD
    J Biomech; 1994 Jul; 27(7):993-5. PubMed ID: 8063850
    [No Abstract]   [Full Text] [Related]  

  • 38. Viscoelastic properties of wet cortical bone--I. Torsional and biaxial studies.
    Lakes RS; Katz JL; Sternstein SS
    J Biomech; 1979; 12(9):657-78. PubMed ID: 489634
    [No Abstract]   [Full Text] [Related]  

  • 39. A Chemo-poroelastic Analysis of Mechanically Induced Fluid and Solute Transport in an Osteonal Cortical Bone.
    Jin ZH; Janes JG; Peterson ML
    Ann Biomed Eng; 2021 Jan; 49(1):299-309. PubMed ID: 32514933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microelectrode studies of stress-generated potentials in four-point bending of bone.
    Starkebaum W; Pollack SR; Korostoff E
    J Biomed Mater Res; 1979 Sep; 13(5):729-51. PubMed ID: 479219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.