These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11277306)

  • 1. Pulsatile flow in an end-to-side vascular graft model: comparison of computations with experimental data.
    Lei M; Giddens DP; Jones SA; Loth F; Bassiouny H
    J Biomech Eng; 2001 Feb; 123(1):80-7. PubMed ID: 11277306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of graft caliber upon wall shear within in vivo distal vascular anastomoses.
    Keynton RS; Evancho MM; Sims RL; Rittgers SE
    J Biomech Eng; 1999 Feb; 121(1):79-88. PubMed ID: 10080093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow dynamics across end-to-end vascular bypass graft anastomoses.
    Kim YH; Chandran KB; Bower TJ; Corson JD
    Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions.
    Loth F; Jones SA; Giddens DP; Bassiouny HS; Glagov S; Zarins CK
    J Biomech Eng; 1997 May; 119(2):187-94. PubMed ID: 9168395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis.
    Weston MW; Rhee K; Tarbell JM
    J Biomech; 1996 Feb; 29(2):187-98. PubMed ID: 8849812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical simulation of flow in a two-dimensional end-to-side anastomosis model.
    Steinman DA; Vinh B; Ethier CR; Ojha M; Cobbold RS; Johnston KW
    J Biomech Eng; 1993 Feb; 115(1):112-8. PubMed ID: 8445888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamics of a side-to-end proximal arterial anastomosis model.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis.
    Steinman DA; Ethier CR
    J Biomech Eng; 1994 Aug; 116(3):294-301. PubMed ID: 7799630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model.
    Ojha M
    J Biomech; 1993 Dec; 26(12):1377-88. PubMed ID: 8308043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries.
    Natarajan S; Mokhtarzadeh-Dehghan MR
    Med Eng Phys; 2000 Oct; 22(8):555-66. PubMed ID: 11182580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow input waveform effects on the temporal and spatial wall shear stress gradients in a femoral graft-artery connector.
    Kleinstreuer C; Lei M; Archie JP
    J Biomech Eng; 1996 Nov; 118(4):506-10. PubMed ID: 8950654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number, and hood length.
    White SS; Zarins CK; Giddens DP; Bassiouny H; Loth F; Jones SA; Glagov S
    J Biomech Eng; 1993 Feb; 115(1):104-11. PubMed ID: 8445887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nonlinear analysis of pulsatile blood flow applied to investigate shear stress in arterial prostheses.
    Charara J; Beaudoin G; Guidoin R
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(1):1-21. PubMed ID: 1617080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady and pulsatile flow fields in an end-to-side arterial anastomosis model.
    Ojha M; Ethier CR; Johnston KW; Cobbold RS
    J Vasc Surg; 1990 Dec; 12(6):747-53. PubMed ID: 2243410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady flow analysis in the vicinity of an end-to-end anastomosis.
    Kim YH; Chandran KB
    Biorheology; 1993; 30(2):117-30. PubMed ID: 8400150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses.
    Moore JA; Steinman DA; Prakash S; Johnston KW; Ethier CR
    J Biomech Eng; 1999 Jun; 121(3):265-72. PubMed ID: 10396691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.