BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 11277511)

  • 1. The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane.
    Manning DP; Jones C
    Appl Ergon; 2001 Apr; 32(2):185-96. PubMed ID: 11277511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slip resistant properties of footwear on ice.
    Gao C; Abeysekera J; Hirvonen M; Grönqvist R
    Ergonomics; 2004 May; 47(6):710-6. PubMed ID: 15204296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting and eliminating slippery footwear.
    Jones C; Manning DP; Bruce M
    Ergonomics; 1995 Feb; 38(2):242-249. PubMed ID: 28084944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors.
    Grönqvist R
    Ergonomics; 1995 Feb; 38(2):224-241. PubMed ID: 28084937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Friction between footwear and floor covered with solid particles under dry and wet conditions.
    Li KW; Meng F; Zhang W
    Int J Occup Saf Ergon; 2014; 20(1):43-53. PubMed ID: 24629869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants.
    Li KW; Chen CJ
    Appl Ergon; 2004 Nov; 35(6):499-507. PubMed ID: 15374757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.
    Kim IJ; Hsiao H; Simeonov P
    Appl Ergon; 2013 Jan; 44(1):58-64. PubMed ID: 22641153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The validity and reliability of a portable slip meter for determining floor slipperiness during simulated heel strike.
    Grönqvist R; Hirvonen M; Rajamäki E; Matz S
    Accid Anal Prev; 2003 Mar; 35(2):211-25. PubMed ID: 12504142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of surface roughness and contaminant on the dynamic friction of porcelain tile.
    Chang WR
    Appl Ergon; 2001 Apr; 32(2):173-84. PubMed ID: 11277510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in Friction Performance between New and Worn Shoes.
    Cook A; Hemler S; Sundaram V; Chanda A; Beschorner K
    IISE Trans Occup Ergon Hum Factors; 2020; 8(4):209-214. PubMed ID: 33955322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slip-shod or safely shod: the bighorn sheep as a natural model for research.
    Manning DP; Cooper JE; Jones C; Bruce M
    J R Soc Med; 1990 Nov; 83(11):686-9. PubMed ID: 2250262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip safety risk analysis of surface properties using the coefficients of friction of rocks.
    Çoşkun G; Sarıışık G; Sarıışık A
    Int J Occup Saf Ergon; 2019 Sep; 25(3):443-457. PubMed ID: 29083960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants.
    Li KW; Wu HH; Lin YC
    Appl Ergon; 2006 Nov; 37(6):743-8. PubMed ID: 16427022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of a rubber outsole with a hybrid surface pattern for preventing slips on icy surfaces.
    Yamaguchi T; Hsu J; Li Y; Maki BE
    Appl Ergon; 2015 Nov; 51():9-17. PubMed ID: 26154199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a high slip-resistant footwear outsole using a hybrid rubber surface pattern.
    Yamaguchi T; Hokkirigawa K
    Ind Health; 2014; 52(5):414-23. PubMed ID: 25055846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Available friction of ladder shoes and slip potential for climbing on a straight ladder.
    Chang WR; Chang CC; Matz S
    Ergonomics; 2005 Jul; 48(9):1169-82. PubMed ID: 16251154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.
    Hsu J; Shaw R; Novak A; Li Y; Ormerod M; Newton R; Dutta T; Fernie G
    Ergonomics; 2016 May; 59(5):717-28. PubMed ID: 26555738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes.
    Beschorner KE; Nasarwanji M; Deschler C; Hemler SL
    Appl Ergon; 2024 Jan; 114():104110. PubMed ID: 37595332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Floor/shoe slip resistance measurement.
    Chaffin DB; Woldstad JC; Trujillo A
    Am Ind Hyg Assoc J; 1992 May; 53(5):283-9. PubMed ID: 1609738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on slip resistance measurements--a new challenge.
    Kim IJ; Nagata H
    Ind Health; 2008 Jan; 46(1):66-76. PubMed ID: 18270452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.