These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 11277511)

  • 21. The slip resistance of common footwear materials measured with two slipmeters.
    Chang WR; Matz S
    Appl Ergon; 2001 Dec; 32(6):549-58. PubMed ID: 11703041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of footwear outsole material on slip resistance on dry and contaminated surfaces with geometrically controlled outsoles.
    Jakobsen L; Lysdal FG; Bagehorn T; Kersting UG; Sivebaek IM
    Ergonomics; 2023 Mar; 66(3):322-329. PubMed ID: 35603991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slip resistance of casual footwear: implications for falls in older adults.
    Menz HB; Lord ST; McIntosh AS
    Gerontology; 2001; 47(3):145-9. PubMed ID: 11340320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coefficient of friction testing parameters influence the prediction of human slips.
    Iraqi A; Cham R; Redfern MS; Beschorner KE
    Appl Ergon; 2018 Jul; 70():118-126. PubMed ID: 29866300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of coefficient of friction based on footwear outsole features.
    Iraqi A; Vidic NS; Redfern MS; Beschorner KE
    Appl Ergon; 2020 Jan; 82():102963. PubMed ID: 31580996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validating the ability of a portable shoe-floor friction testing device, NextSTEPS, to predict human slips.
    Beschorner KE; Chanda A; Moyer BE; Reasinger A; Griffin SC; Johnston IM
    Appl Ergon; 2023 Jan; 106():103854. PubMed ID: 35973317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical modeling of footwear-fluid-floor interaction during slips.
    Gupta S; Chanda A
    J Biomech; 2023 Jul; 156():111690. PubMed ID: 37356270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slipping of the foot on the floor when pulling a pallet truck.
    Li KW; Chang CC; Chang WR
    Appl Ergon; 2008 Nov; 39(6):812-9. PubMed ID: 18222414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preferred surface microscopic geometric features on floors as potential interventions for slip and fall accidents on liquid contaminated surfaces.
    Chang WR
    J Safety Res; 2004; 35(1):71-9. PubMed ID: 14992848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shoe sole tread designs and outcomes of slipping and falling on slippery floor surfaces.
    Liu LW; Lee YH; Lin CJ; Li KW; Chen CY
    PLoS One; 2013; 8(7):e68989. PubMed ID: 23894388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning prediction of footwear slip resistance on glycerol-contaminated surfaces: A pilot study.
    Lau K; Yamaguchi T; Shibata K; Nishi T; Fernie G; Fekr AR
    Appl Ergon; 2024 May; 117():104249. PubMed ID: 38368655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perceiving slipperiness and grip: A meaningful relationship of the shoe-ground interface.
    Morio C; Bourrelly A; Sissler L; Gueguen N
    Gait Posture; 2017 Jan; 51():58-63. PubMed ID: 27701036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subjective assessments of floor slipperiness before and after walk under two lighting conditions.
    Li KW; Zhao C; Peng L; Liu AQ
    Int J Occup Saf Ergon; 2018 Jun; 24(2):294-302. PubMed ID: 28058998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of slipping resistance of footwear and floor surfaces. Influence of manufacture and utilization of the products.
    Leclercq S; Tisserand M; Saulnier H
    Ergonomics; 1995 Feb; 38(2):209-219. PubMed ID: 28084935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of surface roughness in the measurement of slipperiness.
    Chang WR; Kim IJ; Manning DP; Bunterngchit Y
    Ergonomics; 2001 Oct; 44(13):1200-16. PubMed ID: 11794764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions.
    Beschorner KE; Iraqi A; Redfern MS; Cham R; Li Y
    Ergonomics; 2019 May; 62(5):668-681. PubMed ID: 30638144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of slip testing parameters on measured coefficient of friction.
    Beschorner KE; Redfern MS; Porter WL; Debski RE
    Appl Ergon; 2007 Nov; 38(6):773-80. PubMed ID: 17196925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coefficient of friction, walking speed and cadence on slippery and dry surfaces: shoes with different groove depths.
    Ziaei M; Mokhtarinia H; Tabatabai Ghomshe F; Maghsoudipour M
    Int J Occup Saf Ergon; 2019 Dec; 25(4):524-529. PubMed ID: 29134923
    [No Abstract]   [Full Text] [Related]  

  • 39. Analysis of measurements of slip resistance of soiled surfaces on site.
    Leclercq S; Tisserand M; Saulnier H
    Appl Ergon; 1997 Aug; 28(4):283-94. PubMed ID: 9414369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coefficient of friction and subjective assessment of slippery work surfaces.
    Swensen EE; Purswell JL; Schlegel RE; Stanevich RL
    Hum Factors; 1992 Feb; 34(1):67-77. PubMed ID: 1577504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.