These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11277728)

  • 1. Mini-fingerprints detect similar activity of receptor ligands previously recognized only by three-dimensional pharmacophore-based methods.
    Xue L; Stahura FL; Godden JW; Bajorath J
    J Chem Inf Comput Sci; 2001; 41(2):394-401. PubMed ID: 11277728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Database searching for compounds with similar biological activity using short binary bit string representations of molecules.
    Xue L; Godden JW; Bajorath J
    J Chem Inf Comput Sci; 1999; 39(5):881-6. PubMed ID: 10529986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profile scaling increases the similarity search performance of molecular fingerprints containing numerical descriptors and structural keys.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2003; 43(4):1218-25. PubMed ID: 12870914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes.
    Bonachéra F; Parent B; Barbosa F; Froloff N; Horvath D
    J Chem Inf Model; 2006; 46(6):2457-77. PubMed ID: 17125187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarity metrics for ligands reflecting the similarity of the target proteins.
    Schuffenhauer A; Floersheim P; Acklin P; Jacoby E
    J Chem Inf Comput Sci; 2003; 43(2):391-405. PubMed ID: 12653501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel 2D fingerprints for ligand-based virtual screening.
    Ewing T; Baber JC; Feher M
    J Chem Inf Model; 2006; 46(6):2423-31. PubMed ID: 17125184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mini-fingerprints for virtual screening: design principles and generation of novel prototypes based on information theory.
    Xue L; Godden JW; Bajorath J
    SAR QSAR Environ Res; 2003 Feb; 14(1):27-40. PubMed ID: 12688414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors.
    Matter H
    J Med Chem; 1997 Apr; 40(8):1219-29. PubMed ID: 9111296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pseudo-ligand approach to virtual screening.
    Schüller A; Fechner U; Renner S; Franke L; Weber L; Schneider G
    Comb Chem High Throughput Screen; 2006 Jun; 9(5):359-64. PubMed ID: 16787149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rendering conventional molecular fingerprints for virtual screening independent of molecular complexity and size effects.
    Nisius B; Bajorath J
    ChemMedChem; 2010 Jun; 5(6):859-68. PubMed ID: 20425878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Library design and virtual screening using multiple 4-point pharmacophore fingerprints.
    Mason JS; Cheney DL
    Pac Symp Biocomput; 2000; ():576-87. PubMed ID: 10902205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints.
    Vogt M; Bajorath J
    Chem Biol Drug Des; 2008 Jan; 71(1):8-14. PubMed ID: 18069988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction and recombination of fingerprints of different design increase compound recall and the structural diversity of hits.
    Nisius B; Bajorath J
    Chem Biol Drug Des; 2010 Feb; 75(2):152-60. PubMed ID: 20028390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening.
    Xue L; Bajorath J
    Comb Chem High Throughput Screen; 2000 Oct; 3(5):363-72. PubMed ID: 11032954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols.
    Evers A; Hessler G; Matter H; Klabunde T
    J Med Chem; 2005 Aug; 48(17):5448-65. PubMed ID: 16107144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure-activity relationships and nuclear magnetic resonance studies on urotensin II.
    Flohr S; Kurz M; Kostenis E; Brkovich A; Fournier A; Klabunde T
    J Med Chem; 2002 Apr; 45(9):1799-805. PubMed ID: 11960491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Searching for molecules with similar biological activity: analysis by fingerprint profiling.
    Godden JW; Xue L; Stahura FL; Bajorath J
    Pac Symp Biocomput; 2000; ():566-75. PubMed ID: 10902204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of novel antagonists of glycoprotein IIb/IIIa-mediated platelet aggregation through virtual screening.
    Wang Y; Zhao Y; Sun R; Kong W; Wang B; Yang G; Li Y
    Bioorg Med Chem Lett; 2015 Mar; 25(6):1249-53. PubMed ID: 25677660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The design of combinatorial libraries using properties and 3D pharmacophore fingerprints.
    Beno BR; Mason JS
    Drug Discov Today; 2001 Mar; 6(5):251-258. PubMed ID: 11182598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: simultaneous optimization and structure-based diversity.
    Mason JS; Beno BR
    J Mol Graph Model; 2000; 18(4-5):438-51, 538. PubMed ID: 11143561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.