These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11277737)

  • 21. Predicting pK(a) values of substituted phenols from atomic charges: comparison of different quantum mechanical methods and charge distribution schemes.
    Svobodová Vareková R; Geidl S; Ionescu CM; Skrehota O; Kudera M; Sehnal D; Bouchal T; Abagyan R; Huber HJ; Koca J
    J Chem Inf Model; 2011 Aug; 51(8):1795-806. PubMed ID: 21761919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points?
    Varnek A; Kireeva N; Tetko IV; Baskin II; Solov'ev VP
    J Chem Inf Model; 2007; 47(3):1111-22. PubMed ID: 17381081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of pK
    Jensen JH; Swain CJ; Olsen L
    J Phys Chem A; 2017 Jan; 121(3):699-707. PubMed ID: 28054775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization.
    Nigsch F; Bender A; van Buuren B; Tissen J; Nigsch E; Mitchell JB
    J Chem Inf Model; 2006; 46(6):2412-22. PubMed ID: 17125183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A QSPR study of the 31P NMR chemical shifts of phosphines.
    Bosque R; Sales J
    J Chem Inf Comput Sci; 2001; 41(1):225-32. PubMed ID: 11206378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network.
    Skrbić B; Onjia A
    J Chromatogr A; 2006 Mar; 1108(2):279-84. PubMed ID: 16464457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of Mayr electrophilicity with a quantitative structure-property relationship approach using empirical and DFT descriptors.
    Pereira F; Latino DA; Aires-de-Sousa J
    J Org Chem; 2011 Nov; 76(22):9312-9. PubMed ID: 21970444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Research on QSPR for n-octanol-water partition coefficients of organic compounds based on genetic algorithms-support vector machine and genetic algorithms-radial basis function neural networks].
    Qi J; Niu JF; Wang LL
    Huan Jing Ke Xue; 2008 Jan; 29(1):212-8. PubMed ID: 18441943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling molecular boiling points using computed interaction energies.
    Peterangelo SC; Seybold PG
    J Mol Model; 2017 Dec; 24(1):21. PubMed ID: 29264663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation.
    Votano JR; Parham M; Hall LH; Kier LB; Hall LM
    Chem Biodivers; 2004 Nov; 1(11):1829-41. PubMed ID: 17191819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of quantitative structure property relationships for predicting the melting point of energetic materials.
    Morrill JA; Byrd EFC
    J Mol Graph Model; 2015 Nov; 62():190-201. PubMed ID: 26473455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors.
    Xu J; Zhu L; Fang D; Wang L; Xiao S; Liu L; Xu W
    J Mol Graph Model; 2012 Jun; 36():10-9. PubMed ID: 22503858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using surrogate modeling in the prediction of fibrinogen adsorption onto polymer surfaces.
    Smith JR; Knight D; Kohn J; Rasheed K; Weber N; Kholodovych V; Welsh WJ
    J Chem Inf Comput Sci; 2004; 44(3):1088-97. PubMed ID: 15154777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative structure-property relationship study of the solvent polarity using wavelet neural networks.
    Zarei K; Atabati M; Ebrahimi M
    Anal Sci; 2007 Aug; 23(8):937-42. PubMed ID: 17690424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of the formulation dependence of the glass transition temperatures of amine-epoxy copolymers using a QSPR based on the AM1 method.
    Morrill JA; Jensen RE; Madison PH; Chabalowski CF
    J Chem Inf Comput Sci; 2004; 44(3):912-20. PubMed ID: 15154757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of lithium cation basicity from molecular structure.
    Jover J; Bosque R; Sales J
    J Chem Inf Comput Sci; 2004; 44(5):1727-36. PubMed ID: 15446832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QSPR Approach to Predict Nonadditive Properties of Mixtures. Application to Bubble Point Temperatures of Binary Mixtures of Liquids.
    Oprisiu I; Varlamova E; Muratov E; Artemenko A; Marcou G; Polishchuk P; Kuz'min V; Varnek A
    Mol Inform; 2012 Jul; 31(6-7):491-502. PubMed ID: 27477467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors.
    Sabour MR; Moftakhari Anasori Movahed S
    Chemosphere; 2017 Feb; 168():877-884. PubMed ID: 27836283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. QSPR Analysis of Copolymers by Recursive Neural Networks: Prediction of the Glass Transition Temperature of (Meth)acrylic Random Copolymers.
    Bertinetto CG; Duce C; Micheli A; Solaro R; Tiné MR
    Mol Inform; 2010 Sep; 29(8-9):635-43. PubMed ID: 27463457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.