These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11278901)

  • 1. Roles of water in heme peroxidase and catalase mechanisms.
    Jones P
    J Biol Chem; 2001 Apr; 276(17):13791-6. PubMed ID: 11278901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distal site aspartate is essential in the catalase activity of catalase-peroxidases.
    Jakopitsch C; Auer M; Regelsberger G; Jantschko W; Furtmüller PG; Rüker F; Obinger C
    Biochemistry; 2003 May; 42(18):5292-300. PubMed ID: 12731870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalases versus peroxidases: DFT investigation of H₂O₂ oxidation in models systems and implications for heme protein engineering.
    Vidossich P; Alfonso-Prieto M; Rovira C
    J Inorg Biochem; 2012 Dec; 117():292-7. PubMed ID: 22883961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How covalent heme to protein bonds influence the formation and reactivity of redox intermediates of a bacterial peroxidase.
    Auer M; Nicolussi A; Schütz G; Furtmüller PG; Obinger C
    J Biol Chem; 2014 Nov; 289(45):31480-91. PubMed ID: 25246525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hematin iron valence in catalase and peroxidase compound I: relationship to free radical reaction mechanism.
    Dounce AL; Sichak SP
    Free Radic Biol Med; 1988; 5(2):89-93. PubMed ID: 3254300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular switch and electronic circuit modulate catalase activity in catalase-peroxidases.
    Carpena X; Wiseman B; Deemagarn T; Singh R; Switala J; Ivancich A; Fita I; Loewen PC
    EMBO Rep; 2005 Dec; 6(12):1156-62. PubMed ID: 16211084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of catalase activity of heme peroxidases.
    Vlasits J; Jakopitsch C; Bernroitner M; Zamocky M; Furtmüller PG; Obinger C
    Arch Biochem Biophys; 2010 Aug; 500(1):74-81. PubMed ID: 20434429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalase-peroxidase from synechocystis is capable of chlorination and bromination reactions.
    Jakopitsch C; Regelsberger G; Furtmüller PG; Rüker F; Peschek GA; Obinger C
    Biochem Biophys Res Commun; 2001 Sep; 287(3):682-7. PubMed ID: 11563849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of distal tryptophan in the bifunctional activity of catalase-peroxidases.
    Regelsberger G; Jakopitsch C; Furtmüller PG; Rueker F; Switala J; Loewen PC; Obinger C
    Biochem Soc Trans; 2001 May; 29(Pt 2):99-105. PubMed ID: 11356135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of Compound I formation revisited.
    Jones P; Dunford HB
    J Inorg Biochem; 2005 Dec; 99(12):2292-8. PubMed ID: 16213024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: a rational approach.
    Behera RK; Goyal S; Mazumdar S
    J Inorg Biochem; 2010 Nov; 104(11):1185-94. PubMed ID: 20709408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-based radicals in the catalase-peroxidase of synechocystis PCC6803: a multifrequency EPR investigation of wild-type and variants on the environment of the heme active site.
    Ivancich A; Jakopitsch C; Auer M; Un S; Obinger C
    J Am Chem Soc; 2003 Nov; 125(46):14093-102. PubMed ID: 14611246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrophotometric investigations with hexa-coordinate ferric lignin peroxidase: does water retention at the active site influence catalysis?
    Brück TB; Harvey PJ
    Biochem Biophys Res Commun; 2002 Sep; 297(2):406-11. PubMed ID: 12237134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic description of an unusual protonated ferryl species in the catalase from Proteus mirabilis and density functional theory calculations on related models. Consequences for the ferryl protonation state in catalase, peroxidase and chloroperoxidase.
    Horner O; Mouesca JM; Solari PL; Orio M; Oddou JL; Bonville P; Jouve HM
    J Biol Inorg Chem; 2007 May; 12(4):509-25. PubMed ID: 17237942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin trapping of the azidyl radical in azide/catalase/H2O2 and various azide/peroxidase/H2O2 peroxidizing systems.
    Kalyanaraman B; Janzen EG; Mason RP
    J Biol Chem; 1985 Apr; 260(7):4003-6. PubMed ID: 2984193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase.
    Campomanes P; Rothlisberger U; Alfonso-Prieto M; Rovira C
    J Am Chem Soc; 2015 Sep; 137(34):11170-8. PubMed ID: 26274391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid formation of compound II and a tyrosyl radical in the Y229F mutant of Mycobacterium tuberculosis catalase-peroxidase disrupts catalase but not peroxidase function.
    Yu S; Girotto S; Zhao X; Magliozzo RS
    J Biol Chem; 2003 Nov; 278(45):44121-7. PubMed ID: 12944408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.
    Regelsberger G; Jakopitsch C; Engleder M; Rüker F; Peschek GA; Obinger C
    Biochemistry; 1999 Aug; 38(32):10480-8. PubMed ID: 10441144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One- and two-electron oxidation of reduced glutathione by peroxidases.
    Mason RP
    Adv Exp Med Biol; 1986; 197():493-503. PubMed ID: 3020935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme binding and peroxidase activity of a secreted minicatalase.
    Mori G; Doniselli N; Faroldi F; Percudani R
    FEBS Lett; 2016 Dec; 590(24):4495-4506. PubMed ID: 27859138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.