BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11279088)

  • 1. Molecular mechanism of aminoglycoside antibiotic kinase APH(3')-IIIa: roles of conserved active site residues.
    Boehr DD; Thompson PR; Wright GD
    J Biol Chem; 2001 Jun; 276(26):23929-36. PubMed ID: 11279088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of aminoglycoside antibiotic kinase APH(3')-IIIa: role of the nucleotide positioning loop.
    Thompson PR; Boehr DD; Berghuis AM; Wright GD
    Biochemistry; 2002 Jun; 41(22):7001-7. PubMed ID: 12033933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The COOH terminus of aminoglycoside phosphotransferase (3')-IIIa is critical for antibiotic recognition and resistance.
    Thompson PR; Schwartzenhauer J; Hughes DW; Berghuis AM; Wright GD
    J Biol Chem; 1999 Oct; 274(43):30697-706. PubMed ID: 10521458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing a snapshot of the ATP binding domain(s) of aminoglycoside phosphotransferases.
    Perlin MH; Brown SA; Dholakia JN
    Front Biosci; 1999 Jan; 4():D63-71. PubMed ID: 9872732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structure of aminoglycoside-3'-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance.
    Nurizzo D; Shewry SC; Perlin MH; Brown SA; Dholakia JN; Fuchs RL; Deva T; Baker EN; Smith CA
    J Mol Biol; 2003 Mar; 327(2):491-506. PubMed ID: 12628253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of aminoglycoside 3'-phosphotransferase type IIIa: His188 is not a phosphate-accepting residue.
    Thompson PR; Hughes DW; Wright GD
    Chem Biol; 1996 Sep; 3(9):747-55. PubMed ID: 8939691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site labeling of the gentamicin resistance enzyme AAC(6')-APH(2") by the lipid kinase inhibitor wortmannin.
    Boehr DD; Lane WS; Wright GD
    Chem Biol; 2001 Aug; 8(8):791-800. PubMed ID: 11514228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoglycoside phosphotransferases: proteins, structure, and mechanism.
    Wright GD; Thompson PR
    Front Biosci; 1999 Jan; 4():D9-21. PubMed ID: 9872733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of critical residues of choline kinase A2 from Caenorhabditis elegans.
    Yuan C; Kent C
    J Biol Chem; 2004 Apr; 279(17):17801-9. PubMed ID: 14960577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the substrate recognition of aminoglycoside 7''-phosphotransferase-Ia from Streptomyces hygroscopicus.
    Takenoya M; Shimamura T; Yamanaka R; Adachi Y; Ito S; Sasaki Y; Nakamura A; Yajima S
    Acta Crystallogr F Struct Biol Commun; 2019 Sep; 75(Pt 9):599-607. PubMed ID: 31475927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectinomycin kinase from Legionella pneumophila. Characterization of substrate specificity and identification of catalytically important residues.
    Thompson PR; Hughes DW; Cianciotto NP; Wright GD
    J Biol Chem; 1998 Jun; 273(24):14788-95. PubMed ID: 9614079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoglycoside antibiotic phosphotransferases are also serine protein kinases.
    Daigle DM; McKay GA; Thompson PR; Wright GD
    Chem Biol; 1999 Jan; 6(1):11-8. PubMed ID: 9889150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide selectivity of antibiotic kinases.
    Shakya T; Wright GD
    Antimicrob Agents Chemother; 2010 May; 54(5):1909-13. PubMed ID: 20231391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic mechanism of enterococcal kanamycin kinase (APH(3')-IIIa): viscosity, thio, and solvent isotope effects support a Theorell-Chance mechanism.
    McKay GA; Wright GD
    Biochemistry; 1996 Jul; 35(26):8680-5. PubMed ID: 8679630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of the enterococcal aminoglycoside 6'-N-acetyltransferase': role of GNAT-conserved residues in the chemistry of antibiotic inactivation.
    Draker KA; Wright GD
    Biochemistry; 2004 Jan; 43(2):446-54. PubMed ID: 14717599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase.
    Burk DL; Hon WC; Leung AK; Berghuis AM
    Biochemistry; 2001 Jul; 40(30):8756-64. PubMed ID: 11467935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance.
    Stogios PJ; Spanogiannopoulos P; Evdokimova E; Egorova O; Shakya T; Todorovic N; Capretta A; Wright GD; Savchenko A
    Biochem J; 2013 Sep; 454(2):191-200. PubMed ID: 23758273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants of antibiotic recognition and resistance by aminoglycoside phosphotransferase (3')-IIIa: a calorimetric and mutational analysis.
    Kaul M; Barbieri CM; Srinivasan AR; Pilch DS
    J Mol Biol; 2007 May; 369(1):142-56. PubMed ID: 17418235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of conserved P domain residues and Mg2+ in ATP binding in the ground and Ca2+-activated states of sarcoplasmic reticulum Ca2+-ATPase.
    McIntosh DB; Clausen JD; Woolley DG; MacLennan DH; Vilsen B; Andersen JP
    J Biol Chem; 2004 Jul; 279(31):32515-23. PubMed ID: 15133025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing the principles of recognition in the adenine-binding region of an aminoglycoside antibiotic kinase [APH(3')-IIIa].
    Boehr DD; Farley AR; LaRonde FJ; Murdock TR; Wright GD; Cox JR
    Biochemistry; 2005 Sep; 44(37):12445-53. PubMed ID: 16156657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.