These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11279103)

  • 1. Contextual equilibrium effects in DNA molecules.
    Goobes R; Minsky A
    J Biol Chem; 2001 May; 276(19):16155-60. PubMed ID: 11279103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic effects of N3'-->P5' phosphoramidate modification on pyrimidine motif triplex DNA formation.
    Torigoe H
    Biochemistry; 2001 Jan; 40(4):1063-9. PubMed ID: 11170429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of adenine tracts on the B-Z transition. Fine tuning of DNA conformational transition processes.
    Reich Z; Friedman P; Levin-Zaidman S; Minsky A
    J Biol Chem; 1993 Apr; 268(11):8261-6. PubMed ID: 8463336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the formation of DNA triplex and effect of chemical modifications on its stability as studied by isothermal titration calorimetry.
    Kamiya M; Shimizume R; Shindo H; Torigoe H; Sarai A
    Nucleic Acids Symp Ser; 1995; (34):57-8. PubMed ID: 8841550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic, kinetic, and conformational properties of a parallel intermolecular DNA triplex containing 5' and 3' junctions.
    Asensio JL; Dosanjh HS; Jenkins TC; Lane AN
    Biochemistry; 1998 Oct; 37(43):15188-98. PubMed ID: 9790683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the DNA triplex formed by d(TGGGTGGGTGGTTGGGTGGG) and a critical R.Y sequence located in the promoter of the murine Ki-ras proto-oncogene.
    Xodo LE
    FEBS Lett; 1995 Aug; 370(1-2):153-7. PubMed ID: 7649296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the third-strand orientation on the thermodynamic stability of the four-way DNA junction.
    Makube N; Klump HH
    Arch Biochem Biophys; 2001 Sep; 393(1):1-13. PubMed ID: 11516156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkage of proton binding to the thermal dissociation of triple helix complex.
    Petraccone L; Erra E; Mattia CA; Fedullo V; Barone G; Giancola C
    Biophys Chem; 2004 Jul; 110(1-2):73-81. PubMed ID: 15223145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex.
    Gondeau C; Maurizot JC; Durand M
    Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition characteristics and thermodynamic analysis of DNA duplex formation: a quantitative consideration for the extent of duplex association.
    Wu P; Sugimoto N
    Nucleic Acids Res; 2000 Dec; 28(23):4762-8. PubMed ID: 11095688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding of a branched double-helical DNA three-way junction with triple-helical ends.
    Hüsler PL; Klump HH
    Arch Biochem Biophys; 1994 Aug; 313(1):29-38. PubMed ID: 8053683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting of a DNA hairpin without hyperchromism.
    Davis TM; McFail-Isom L; Keane E; Williams LD
    Biochemistry; 1998 May; 37(19):6975-8. PubMed ID: 9578584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of DNA single-stranded order to the thermodynamics of duplex formation.
    Vesnaver G; Breslauer KJ
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3569-73. PubMed ID: 2023903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix.
    Völker J; Osborne SE; Glick GD; Breslauer KJ
    Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotion of pyrimidine motif triplex formation by morpholino modification of triplex-forming oligonucleotide: kinetic and thermodynamic studies.
    Torigoe H; Kawahashi K; Tamura Y
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):1019-21. PubMed ID: 16248083
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of organophosphorus insecticide methylparathion with calf thymus DNA and a synthetic DNA duplex.
    Blasiak J; Kleinwächter V; Walter Z; Zaludová R
    Z Naturforsch C J Biosci; 1995; 50(11-12):820-3. PubMed ID: 8561827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of nucleic acid structure by ligand binding: induction of a DNA.RNA.DNA hybrid triplex by DAPI intercalation.
    Xu Z; Pilch DS; Srinivasan AR; Olson WK; Geacintov NE; Breslauer KJ
    Bioorg Med Chem; 1997 Jun; 5(6):1137-47. PubMed ID: 9222508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.