These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 11279187)
1. Regulatory elements governing transcription in specialized myofiber subtypes. Yan Z; Serrano AL; Schiaffino S; Bassel-Duby R; Williams RS J Biol Chem; 2001 May; 276(20):17361-6. PubMed ID: 11279187 [TBL] [Abstract][Full Text] [Related]
2. Common core sequences are found in skeletal muscle slow- and fast-fiber-type-specific regulatory elements. Nakayama M; Stauffer J; Cheng J; Banerjee-Basu S; Wawrousek E; Buonanno A Mol Cell Biol; 1996 May; 16(5):2408-17. PubMed ID: 8628309 [TBL] [Abstract][Full Text] [Related]
3. Transcription enhancer factor 1 binds multiple muscle MEF2 and A/T-rich elements during fast-to-slow skeletal muscle fiber type transitions. Karasseva N; Tsika G; Ji J; Zhang A; Mao X; Tsika R Mol Cell Biol; 2003 Aug; 23(15):5143-64. PubMed ID: 12861002 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity. Calvo S; Stauffer J; Nakayama M; Buonanno A Dev Genet; 1996; 19(2):169-81. PubMed ID: 8900050 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional regulation of acetylcholinesterase-associated collagen ColQ: differential expression in fast and slow twitch muscle fibers is driven by distinct promoters. Lee HH; Choi RC; Ting AK; Siow NL; Jiang JX; Massoulié J; Tsim KW J Biol Chem; 2004 Jun; 279(26):27098-107. PubMed ID: 15102835 [TBL] [Abstract][Full Text] [Related]
6. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. Wu H; Naya FJ; McKinsey TA; Mercer B; Shelton JM; Chin ER; Simard AR; Michel RN; Bassel-Duby R; Olson EN; Williams RS EMBO J; 2000 May; 19(9):1963-73. PubMed ID: 10790363 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional regulation of acetylcholinesterase-associated collagen ColQ in fast- and slow-twitch muscle fibers. Ting AK; Siow NL; Kong LW; Tsim KW Chem Biol Interact; 2005 Dec; 157-158():63-70. PubMed ID: 16256971 [TBL] [Abstract][Full Text] [Related]
8. Human cytomegalovirus IE1 promoter/enhancer drives variable gene expression in all fiber types in transgenic mouse skeletal muscle. Hallauer PL; Hastings KE BMC Genet; 2000; 1():1. PubMed ID: 11038264 [TBL] [Abstract][Full Text] [Related]
9. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. Hennebry A; Berry C; Siriett V; O'Callaghan P; Chau L; Watson T; Sharma M; Kambadur R Am J Physiol Cell Physiol; 2009 Mar; 296(3):C525-34. PubMed ID: 19129464 [TBL] [Abstract][Full Text] [Related]
10. Molecular dissection of DNA sequences and factors involved in slow muscle-specific transcription. Calvo S; Vullhorst D; Venepally P; Cheng J; Karavanova I; Buonanno A Mol Cell Biol; 2001 Dec; 21(24):8490-503. PubMed ID: 11713284 [TBL] [Abstract][Full Text] [Related]
11. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. Chemello F; Bean C; Cancellara P; Laveder P; Reggiani C; Lanfranchi G PLoS One; 2011 Feb; 6(2):e16807. PubMed ID: 21364935 [TBL] [Abstract][Full Text] [Related]
12. Delineation of a slow-twitch-myofiber-specific transcriptional element by using in vivo somatic gene transfer. Corin SJ; Levitt LK; O'Mahoney JV; Joya JE; Hardeman EC; Wade R Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6185-9. PubMed ID: 7597099 [TBL] [Abstract][Full Text] [Related]
13. Postnatal development and plasticity of specialized muscle fiber characteristics in the hindlimb. Garry DJ; Bassel-Duby RS; Richardson JA; Grayson J; Neufer PD; Williams RS Dev Genet; 1996; 19(2):146-56. PubMed ID: 8900047 [TBL] [Abstract][Full Text] [Related]
14. Difference in potential DNA methylation impact on gene expression between fast- and slow-type myofibers. Oe M; Ojima K; Muroya S Physiol Genomics; 2021 Feb; 53(2):69-83. PubMed ID: 33459151 [TBL] [Abstract][Full Text] [Related]
15. Interaction between myoglobin and mitochondria in rat skeletal muscle. Yamada T; Furuichi Y; Takakura H; Hashimoto T; Hanai Y; Jue T; Masuda K J Appl Physiol (1985); 2013 Feb; 114(4):490-7. PubMed ID: 23195625 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of ryanodine receptor 1 in fast skeletal muscle fibers induces a fast-to-slow muscle fiber type transition. Jordan T; Jiang H; Li H; DiMario JX J Cell Sci; 2004 Dec; 117(Pt 25):6175-83. PubMed ID: 15564379 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Lin J; Wu H; Tarr PT; Zhang CY; Wu Z; Boss O; Michael LF; Puigserver P; Isotani E; Olson EN; Lowell BB; Bassel-Duby R; Spiegelman BM Nature; 2002 Aug; 418(6899):797-801. PubMed ID: 12181572 [TBL] [Abstract][Full Text] [Related]
18. Simple method for the identification of oxidative fibers in skeletal muscle. Takemasa T; Sugimoto K; Miyazaki M; Machida M; Ikeda S; Hitomi Y; Kizaki T; Ohno H; Yamashita K; Haga S Eur J Appl Physiol; 2004 Mar; 91(2-3):357-9. PubMed ID: 14735365 [TBL] [Abstract][Full Text] [Related]
19. A 40-kilodalton protein binds specifically to an upstream sequence element essential for muscle-specific transcription of the human myoglobin promoter. Bassel-Duby R; Hernandez MD; Gonzalez MA; Krueger JK; Williams RS Mol Cell Biol; 1992 Nov; 12(11):5024-32. PubMed ID: 1406677 [TBL] [Abstract][Full Text] [Related]
20. Modular elements of the MLC 1f/3f locus confer fiber-specific transcription regulation in transgenic mice. Neville C; Gonzales D; Houghton L; McGrew MJ; Rosenthal N Dev Genet; 1996; 19(2):157-62. PubMed ID: 8900048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]