These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11281157)

  • 1. Simulation of thermal diffuse scattering including a detailed phonon dispersion curve.
    Muller DA; Edwards B; Kirkland EJ; Silcox J
    Ultramicroscopy; 2001 Feb; 86(3-4):371-80. PubMed ID: 11281157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using molecular dynamics for multislice TEM simulation of thermal diffuse scattering in AlGaN.
    Krause FF; Bredemeier D; Schowalter M; Mehrtens T; Grieb T; Rosenauer A
    Ultramicroscopy; 2018 Jun; 189():124-135. PubMed ID: 29660631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of molecular dynamics potentials used to account for thermal diffuse scattering in multislice simulations.
    Chen X; Kim DS; LeBeau JM
    Ultramicroscopy; 2023 Feb; 244():113644. PubMed ID: 36410085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scattering angle dependence of temperature susceptivity of electron scattering in scanning transmission electron microscopy.
    Zhu M; Hwang J
    Ultramicroscopy; 2022 Jan; 232():113419. PubMed ID: 34740029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images.
    Croitoru MD; Van Dyck D; Van Aert S; Bals S; Verbeeck J
    Ultramicroscopy; 2006; 106(10):933-40. PubMed ID: 16737777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image simulation for atomic resolution secondary electron image.
    Wu L; Egerton RF; Zhu Y
    Ultramicroscopy; 2012 Dec; 123():66-73. PubMed ID: 22940532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An emission-potential multislice approximation to simulate thermal diffuse scattering in high-resolution transmission electron microscopy.
    Rosenauer A; Schowalter M; Titantah JT; Lamoen D
    Ultramicroscopy; 2008 Nov; 108(12):1504-13. PubMed ID: 18514420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fast Frozen Phonon Algorithm Using Mixed Static Potentials.
    Peters JJP
    Ultramicroscopy; 2021 Oct; 229():113364. PubMed ID: 34352601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal diffuse scattering in sub-angstrom quantitative electron microscopy-phenomenon, effects and approaches.
    Wang ZL
    Micron; 2003; 34(3-5):141-55. PubMed ID: 12895485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy: A comparison study in terms of integrated intensity and atomic column position measurement.
    Alania M; Lobato I; Van Aert S
    Ultramicroscopy; 2018 Jan; 184(Pt A):188-198. PubMed ID: 28942200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inelastic multislice simulation method incorporating plasmon energy losses.
    Mendis BG
    Ultramicroscopy; 2019 Nov; 206():112816. PubMed ID: 31377522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of nuclear quantum effects on frozen phonon simulations of electron vortex beam HAADF-STEM images.
    Löfgren A; Zeiger P; Kocevski V; Rusz J
    Ultramicroscopy; 2016 May; 164():62-9. PubMed ID: 26852870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of electron-phonon scattering for determination of temperature variations at high spatial resolution in the transmission electron microscope.
    He L; Hull R
    Nanotechnology; 2012 May; 23(20):205705. PubMed ID: 22543637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of magnetic Bragg scattering in transmission electron microscopy.
    Snarski-Adamski J; Edström A; Zeiger P; Castellanos-Reyes JÁ; Lyon K; Werwiński M; Rusz J
    Ultramicroscopy; 2023 May; 247():113698. PubMed ID: 36791558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering.
    Mendis B
    Acta Crystallogr A Found Adv; 2024 Mar; 80(Pt 2):178-188. PubMed ID: 38270201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution electron-microscope images of crystals with correlated atomic displacements.
    Etheridge J
    Acta Crystallogr A; 1999 Mar; 55(Pt 2 Pt 1):143-159. PubMed ID: 10927244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative STEM: A method for measuring temperature and thickness effects on thermal diffuse scattering using STEM/EELS, and for testing electron scattering models.
    Minson PS; Rivera F; Vanfleet R
    Ultramicroscopy; 2023 Apr; 246():113684. PubMed ID: 36689849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations.
    Eggeman AS; London A; Midgley PA
    Ultramicroscopy; 2013 Nov; 134():44-7. PubMed ID: 23770032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative annular dark-field STEM images of a silicon crystal using a large-angle convergent electron probe with a 300-kV cold field-emission gun.
    Kim S; Oshima Y; Sawada H; Kaneyama T; Kondo Y; Takeguchi M; Nakayama Y; Tanishiro Y; Takayanagi K
    J Electron Microsc (Tokyo); 2011; 60(2):109-16. PubMed ID: 21247969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.