These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11281648)

  • 41. The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca(2+) and interacts with triadin.
    Shin DW; Ma J; Kim DH
    FEBS Lett; 2000 Dec; 486(2):178-82. PubMed ID: 11113462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two pools of IRE1α in cardiac and skeletal muscle cells.
    Wang Q; Groenendyk J; Paskevicius T; Qin W; Kor KC; Liu Y; Hiess F; Knollmann BC; Chen SRW; Tang J; Chen XZ; Agellon LB; Michalak M
    FASEB J; 2019 Aug; 33(8):8892-8904. PubMed ID: 31051095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The transmembrane segment of ryanodine receptor contains an intracellular membrane retention signal for Ca(2+) release channel.
    Bhat MB; Ma J
    J Biol Chem; 2002 Mar; 277(10):8597-601. PubMed ID: 11779857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Topology of Homer 1c and Homer 1a in C2C12 myotubes and transgenic skeletal muscle fibers.
    Volpe P; Sandri C; Bortoloso E; Valle G; Nori A
    Biochem Biophys Res Commun; 2004 Apr; 316(3):884-92. PubMed ID: 15033484
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells.
    Jorgensen AO; Shen AC; Campbell KP
    J Cell Biol; 1985 Jul; 101(1):257-68. PubMed ID: 4008530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of endoplasmic reticulum stress proteins during skeletal muscle disuse atrophy.
    Hunter RB; Mitchell-Felton H; Essig DA; Kandarian SC
    Am J Physiol Cell Physiol; 2001 Oct; 281(4):C1285-90. PubMed ID: 11546666
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A calcium-induced calcium release mechanism mediated by calsequestrin.
    Lee YS; Keener JP
    J Theor Biol; 2008 Aug; 253(4):668-79. PubMed ID: 18538346
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biochemical characterization of calsequestrin-binding 30-kDa protein in sarcoplasmic reticulum of skeletal muscle.
    Kagari T; Yamaguchi N; Kasai M
    Biochem Biophys Res Commun; 1996 Oct; 227(3):700-6. PubMed ID: 8885997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1.
    García-Castañeda M; Vega AV; Rodríguez R; Montiel-Jaen MG; Cisneros B; Zarain-Herzberg A; Avila G
    J Physiol; 2017 Jul; 595(13):4167-4187. PubMed ID: 28303574
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional behaviour of the ryanodine receptor/Ca(2+)-release channel in vesiculated derivatives of the junctional membrane of terminal cisternae of rabbit fast muscle sarcoplasmic reticulum.
    Damiani E; Tobaldin G; Bortoloso E; Margreth A
    Cell Calcium; 1997 Aug; 22(2):129-50. PubMed ID: 9292231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of a region of calsequestrin that binds to the junctional face membrane of sarcoplasmic reticulum.
    Collins JH; Tarcsafalvi A; Ikemoto N
    Biochem Biophys Res Commun; 1990 Feb; 167(1):189-93. PubMed ID: 2310388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The endoplasmic-sarcoplasmic reticulum of smooth muscle: immunocytochemistry of vas deferens fibers reveals specialized subcompartments differently equipped for the control of Ca2+ homeostasis.
    Villa A; Podini P; Panzeri MC; Söling HD; Volpe P; Meldolesi J
    J Cell Biol; 1993 Jun; 121(5):1041-51. PubMed ID: 8388876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inefficient glycosylation leads to high steady-state levels of actively degrading cardiac triadin-1.
    Milstein ML; McFarland TP; Marsh JD; Cala SE
    J Biol Chem; 2008 Jan; 283(4):1929-35. PubMed ID: 18025088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles.
    Bagnato P; Barone V; Giacomello E; Rossi D; Sorrentino V
    J Cell Biol; 2003 Jan; 160(2):245-53. PubMed ID: 12527750
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle.
    Royer L; Ríos E
    J Physiol; 2009 Jul; 587(Pt 13):3101-11. PubMed ID: 19403601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glycosylation of skeletal calsequestrin: implications for its function.
    Sanchez EJ; Lewis KM; Munske GR; Nissen MS; Kang C
    J Biol Chem; 2012 Jan; 287(5):3042-50. PubMed ID: 22170046
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface plasmon resonance studies prove the interaction of skeletal muscle sarcoplasmic reticular Ca(2+) release channel/ryanodine receptor with calsequestrin.
    Herzog A; Szegedi C; Jona I; Herberg FW; Varsanyi M
    FEBS Lett; 2000 Apr; 472(1):73-7. PubMed ID: 10781808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle.
    Sztretye M; Yi J; Figueroa L; Zhou J; Royer L; Allen P; Brum G; Ríos E
    J Gen Physiol; 2011 Aug; 138(2):231-47. PubMed ID: 21788611
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Different endoplasmic reticulum trafficking and processing pathways for calsequestrin (CSQ) and epitope-tagged CSQ.
    Houle TD; Ram ML; McMurray WJ; Cala SE
    Exp Cell Res; 2006 Dec; 312(20):4150-61. PubMed ID: 17045261
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ERcalcistorin/protein-disulfide isomerase acts as a calcium storage protein in the endoplasmic reticulum of a living cell. Comparison with calreticulin and calsequestrin.
    Lucero HA; Lebeche D; Kaminer B
    J Biol Chem; 1998 Apr; 273(16):9857-63. PubMed ID: 9545326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.