These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 1128177)
1. Incorporation of oxygen-18 into secondary alcohols of grasshopper Melanoplus sanguinipes. Blomquist GJ; Mccain DC; Jackson LL Lipids; 1975 May; 10(5):303-6. PubMed ID: 1128177 [TBL] [Abstract][Full Text] [Related]
2. Cuticular lipids of insects. VI. Cuticular lipids of the grasshoppers Melanoplus sanguinipes and Melanoplus packardii. Soliday CL; Blomquist GJ; Jackson LL J Lipid Res; 1974 Jul; 15(4):399-405. PubMed ID: 4851234 [TBL] [Abstract][Full Text] [Related]
3. Hydroxylation of n-alkanes to secondary alcohols and their esterification in the grasshopper Melanoplus sanguinipes. Blomquist GJ; Jackson LL Biochem Biophys Res Commun; 1973 Aug; 53(3):703-8. PubMed ID: 4731948 [No Abstract] [Full Text] [Related]
4. Fluorescein-dextran sequestration in the reproductive tract of the migratory grasshopper Melanoplus sanguinipes (Orthoptera, Acridiidae). Jones N; Taub-Montemayor T; Rankin MA Micron; 2013 Mar; 46():80-4. PubMed ID: 23276466 [TBL] [Abstract][Full Text] [Related]
5. The incorporation of 18O and 14C from long-chain alcohols into the alkyl and alk-1-enyl ethers of phospholipids of developing rat brain. Bell OE; Snyder F; Blank ML Biochim Biophys Acta; 1971 May; 231(3):579-83. PubMed ID: 5282832 [No Abstract] [Full Text] [Related]
6. Normal and branched alkanes from cast skins of the grasshopper Schistocerca vaga (Scudder). Nelson DR; Sukkestad DR J Lipid Res; 1975 Jan; 16(1):12-8. PubMed ID: 1110321 [TBL] [Abstract][Full Text] [Related]
7. The influence of host suitability on the range of grasshopper species utilized by Blaesoxipha atlanis (Diptera: Sarcophagidae) in the field. Danyk T; Mackauer M; Johnson DL Bull Entomol Res; 2005 Dec; 95(6):571-8. PubMed ID: 16336704 [TBL] [Abstract][Full Text] [Related]
8. Modeling Ecological Dynamics of a Major Agricultural Pest Insect (Melanoplus sanguinipes; Orthoptera: Acrididae): A Cohort-Based Approach Incorporating the Effects of Weather on Grasshopper Development and Abundance. Olfert O; Weiss RM; Giffen D; Vankosky MA J Econ Entomol; 2021 Feb; 114(1):122-130. PubMed ID: 33179743 [TBL] [Abstract][Full Text] [Related]
9. Horizontal and trophic transfer of diflubenzuron and fipronil among grasshoppers (Melanoplus sanguinipes) and between grasshoppers and darkling beetles (Tenebrionidae). Smith DI; Lockwood JA Arch Environ Contam Toxicol; 2003 Apr; 44(3):377-82. PubMed ID: 12712298 [TBL] [Abstract][Full Text] [Related]
10. A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae). Groenewald B; Chown SL; Terblanche JS J Exp Biol; 2014 Oct; 217(Pt 19):3407-15. PubMed ID: 25063854 [TBL] [Abstract][Full Text] [Related]
11. Chemical and physical analyses of wax ester properties. Patel S; Nelson DR; Gibbs AG J Insect Sci; 2001; 1():4. PubMed ID: 15455064 [TBL] [Abstract][Full Text] [Related]
12. Geographic and altitudinal variation in water balance and metabolic rate in a California grasshopper, Melanoplus sanguinipes. Rourke BC J Exp Biol; 2000 Sep; 203(Pt 17):2699-712. PubMed ID: 10934009 [TBL] [Abstract][Full Text] [Related]
13. Laboratory and field evaluations of imidacloprid against Melanoplus sanguinipes (Orthoptera: Acrididae) on small grains. Tharp CI; Johnson GD; Onsager JA J Econ Entomol; 2000 Apr; 93(2):293-9. PubMed ID: 10826175 [TBL] [Abstract][Full Text] [Related]
14. The occurrence of inducible anti-Escherichia coli activity in hemolymph from the migratory grasshopper, Melanoplus sanguinipes. Gillespie JP; Koshinsky HA; Khachatourians GG Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Jan; 104(1):111-5. PubMed ID: 8097445 [TBL] [Abstract][Full Text] [Related]
15. Antioxidants in grasshoppers: higher levels defend the midgut tissues of a polyphagous species than a graminivorous species. Barbehenn RV J Chem Ecol; 2003 Mar; 29(3):683-702. PubMed ID: 12757328 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of perhydroanthracenes in the rabbit. Robertson JS; Dunstan PJ Biochem J; 1971 Sep; 124(3):543-7. PubMed ID: 5135241 [TBL] [Abstract][Full Text] [Related]
17. Increased juvenile hormone levels after long-duration flight in the grasshopper, Melanoplus sanguinipes. Min KJ; Jones N; Borst DW; Rankin MA J Insect Physiol; 2004 Jun; 50(6):531-7. PubMed ID: 15183282 [TBL] [Abstract][Full Text] [Related]
18. Effects of livestock grazing on grasshopper abundance on a native rangeland in Montana. O'Neill KM; Olson BE; Wallander R; Rolston MG; Seibert CE Environ Entomol; 2010 Jun; 39(3):775-86. PubMed ID: 20550790 [TBL] [Abstract][Full Text] [Related]
19. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Babot ED; del Río JC; Kalum L; Martínez AT; Gutiérrez A Biotechnol Bioeng; 2013 Sep; 110(9):2323-32. PubMed ID: 23519689 [TBL] [Abstract][Full Text] [Related]
20. Comparison of radioimmunoassay and liquid chromatography tandem mass spectrometry for determination of juvenile hormone titers. Chen Z; Linse KD; Taub-Montemayor TE; Rankin MA Insect Biochem Mol Biol; 2007 Aug; 37(8):799-807. PubMed ID: 17628278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]