These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
659 related articles for article (PubMed ID: 11282454)
1. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis. Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454 [TBL] [Abstract][Full Text] [Related]
2. Identification of inhibitor binding sites of the cAMP-specific phosphodiesterase 4. Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D Cell Signal; 2001 Apr; 13(4):287-97. PubMed ID: 11306246 [TBL] [Abstract][Full Text] [Related]
3. Cyclic nucleotide phosphodiesterases (PDEs) in human osteoblastic cells; the effect of PDE inhibition on cAMP accumulation. Ahlström M; Pekkinen M; Huttunen M; Lamberg-Allardt C Cell Mol Biol Lett; 2005; 10(2):305-19. PubMed ID: 16010295 [TBL] [Abstract][Full Text] [Related]
4. Analysis of a mutation in phosphodiesterase type 4 that alters both inhibitor activity and nucleotide selectivity. Herman SB; Juilfs DM; Fauman EB; Juneau P; Menetski JP Mol Pharmacol; 2000 May; 57(5):991-9. PubMed ID: 10779384 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. Suvarna NU; O'Donnell JM J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724 [TBL] [Abstract][Full Text] [Related]
6. Implications of PDE4 structure on inhibitor selectivity across PDE families. Ke H Int J Impot Res; 2004 Jun; 16 Suppl 1():S24-7. PubMed ID: 15224132 [TBL] [Abstract][Full Text] [Related]
7. Changes in phosphodiesterase activity in the developing rat submandibular gland. Tanaka S; Shimooka S; Shimomura H Arch Oral Biol; 2002 Aug; 47(8):567-76. PubMed ID: 12221013 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning and transient expression in COS7 cells of a novel human PDE4B cAMP-specific phosphodiesterase, HSPDE4B3. Huston E; Lumb S; Russell A; Catterall C; Ross AH; Steele MR; Bolger GB; Perry MJ; Owens RJ; Houslay MD Biochem J; 1997 Dec; 328 ( Pt 2)(Pt 2):549-58. PubMed ID: 9371714 [TBL] [Abstract][Full Text] [Related]
9. Regulation of distinct cyclic AMP-specific phosphodiesterase (phosphodiesterase type 4) isozymes in human monocytic cells. Verghese MW; McConnell RT; Lenhard JM; Hamacher L; Jin SL Mol Pharmacol; 1995 Jun; 47(6):1164-71. PubMed ID: 7603456 [TBL] [Abstract][Full Text] [Related]
10. Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1). MacKenzie SJ; Baillie GS; McPhee I; MacKenzie C; Seamons R; McSorley T; Millen J; Beard MB; van Heeke G; Houslay MD Br J Pharmacol; 2002 Jun; 136(3):421-33. PubMed ID: 12023945 [TBL] [Abstract][Full Text] [Related]
11. Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by up-regulating PDE3 and inducing PDE4D1 and PDE4D2 splice variants as well as down-regulating a novel PDE4A splice variant. Erdogan S; Houslay MD Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):165-75. PubMed ID: 9003416 [TBL] [Abstract][Full Text] [Related]
12. Diazepam and rolipram differentially inhibit cyclic AMP-specific phosphodiesterases PDE4A1 and PDE4B3 in the mouse. Cherry JA; Thompson BE; Pho V Biochim Biophys Acta; 2001 Mar; 1518(1-2):27-35. PubMed ID: 11267656 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a novel cAMP-binding, cAMP-specific cyclic nucleotide phosphodiesterase (TcrPDEB1) from Trypanosoma cruzi. Díaz-Benjumea R; Laxman S; Hinds TR; Beavo JA; Rascón A Biochem J; 2006 Oct; 399(2):305-14. PubMed ID: 16776650 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the structure of a low Km, rolipram-sensitive cAMP phosphodiesterase. Mapping of the catalytic domain. Jin SL; Swinnen JV; Conti M J Biol Chem; 1992 Sep; 267(26):18929-39. PubMed ID: 1326538 [TBL] [Abstract][Full Text] [Related]
15. Occupancy of the catalytic site of the PDE4A4 cyclic AMP phosphodiesterase by rolipram triggers the dynamic redistribution of this specific isoform in living cells through a cyclic AMP independent process. Terry R; Cheung YF; Praestegaard M; Baillie GS; Huston E; Gall I; Adams DR; Houslay MD Cell Signal; 2003 Oct; 15(10):955-71. PubMed ID: 12873709 [TBL] [Abstract][Full Text] [Related]
16. Regulation of cyclic AMP in rat pulmonary microvascular endothelial cells by rolipram-sensitive cyclic AMP phosphodiesterase (PDE4). Thompson WJ; Ashikaga T; Kelly JJ; Liu L; Zhu B; Vemavarapu L; Strada SJ Biochem Pharmacol; 2002 Feb; 63(4):797-807. PubMed ID: 11992650 [TBL] [Abstract][Full Text] [Related]
17. Functional plasticity of cyclic AMP hydrolysis in rat adenohypophysial corticotroph cells. Ang KL; Antoni FA Cell Signal; 2002 May; 14(5):445-52. PubMed ID: 11882389 [TBL] [Abstract][Full Text] [Related]
18. Identification of overlapping but distinct cAMP and cGMP interaction sites with cyclic nucleotide phosphodiesterase 3A by site-directed mutagenesis and molecular modeling based on crystalline PDE4B. Zhang W; Ke H; Tretiakova AP; Jameson B; Colman RW Protein Sci; 2001 Aug; 10(8):1481-9. PubMed ID: 11468344 [TBL] [Abstract][Full Text] [Related]
19. Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP hydrolytic activity in subcellular fractions of human myocardium. Hambleton R; Krall J; Tikishvili E; Honeggar M; Ahmad F; Manganiello VC; Movsesian MA J Biol Chem; 2005 Nov; 280(47):39168-74. PubMed ID: 16172121 [TBL] [Abstract][Full Text] [Related]