BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11282575)

  • 1. Ascorbic acid changes the pattern of purine metabolism during germination of white spruce somatic embryos.
    Stasolla C; Loukanina N; Ashihara H; Yeung EC; Thorpe TA
    Tree Physiol; 2001 Apr; 21(6):359-67. PubMed ID: 11282575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous ascorbic acid modulates meristem reactivation in white spruce somatic embryos and affects thymidine and uridine metabolism.
    Stasolla C; Yeung EC
    Tree Physiol; 2006 Sep; 26(9):1197-206. PubMed ID: 16740495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purine metabolism during white spruce somatic embryo development: salvage of adenine, adenosine, and inosine.
    Ashihara H; Stasolla C; Loukanina N; Thorpe TA
    Plant Sci; 2001 Mar; 160(4):647-657. PubMed ID: 11448740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2006 Dec; 225(1):115-26. PubMed ID: 16845529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular ascorbic acid regulates the activity of major peroxidases in the apical poles of germinating white spruce (Picea glauca) somatic embryos.
    Stasolla C; Yeung EC
    Plant Physiol Biochem; 2007; 45(3-4):188-98. PubMed ID: 17400467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purine and pyrimidine nucleotide synthesis and degradation during in vitro morphogenesis of white spruce (Picea glauca).
    Stasolla C; Thorpe TA
    Front Biosci; 2004 May; 9():1506-19. PubMed ID: 14977562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of purine and pyrimidine nucleotide biosynthesis during shoot initiation from epicotyl explants of white spruce (Picea glauca).
    Stasolla C; Loukanina N; Ashihara H; Yeung EC; Thorpe TA
    Plant Sci; 2006 Sep; 171(3):345-54. PubMed ID: 22980203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of nicotinamide, adenine and inosine in developing microspore-derived canola (Brassica napus) embryos.
    Ashihara H; Luit B; Belmonte M; Stasolla C
    Plant Physiol Biochem; 2008; 46(8-9):752-9. PubMed ID: 18524610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brassinolide-improved development of Brassica napus microspore-derived embryos is associated with increased activities of purine and pyrimidine salvage pathways.
    Belmonte M; Elhiti M; Ashihara H; Stasolla C
    Planta; 2011 Jan; 233(1):95-107. PubMed ID: 20931222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purine metabolism by intracellular Chlamydia psittaci.
    McClarty G; Fan H
    J Bacteriol; 1993 Aug; 175(15):4662-9. PubMed ID: 8335625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of tritiated hypoxanthine, adenine and adenosine for purine-salvage incorporation into nucleic acids of the malarial parasite, Plasmodium berghei.
    Van Dyke K
    Tropenmed Parasitol; 1975 Jun; 26(2):232-8. PubMed ID: 1099747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of osmoticum on ascorbate and glutathione metabolism during white spruce (Picea glauca) somatic embryo development.
    Belmonte MF; Macey J; Yeung EC; Stasolla C
    Plant Physiol Biochem; 2005 Apr; 43(4):337-46. PubMed ID: 15907685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct fluctuations in nucleotide metabolism accompany the enhanced in vitro embryogenic capacity of Brassica cells over-expressing SHOOTMERISTEMLESS.
    Elhiti M; Ashihara H; Stasolla C
    Planta; 2011 Dec; 234(6):1251-65. PubMed ID: 21773791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purine metabolism in germinating wheat embryos.
    Price CE; Murray AW
    Biochem J; 1969 Nov; 115(2):129-33. PubMed ID: 4314115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrimidine nucleotide and nucleic acid synthesis in embryos and megagametophytes of white spruce (Picea glauca) during germination.
    Stasolla C; Loukanina N; Ashihara H; Yeung EC; Thorpe TA
    Physiol Plant; 2002 May; 115(1):155-165. PubMed ID: 12010479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purine base and nucleoside uptake in Plasmodium berghei and host erythrocytes.
    Hansen BD; Sleeman HK; Pappas PW
    J Parasitol; 1980 Apr; 66(2):205-12. PubMed ID: 6993639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca).
    Belmonte MF; Donald G; Reid DM; Yeung EC; Stasolla C
    J Exp Bot; 2005 Sep; 56(419):2355-64. PubMed ID: 15996982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous purine metabolism in the conidia of wild type and certain adenine mutants of Neurospora crassa. I. The nature of the reserve pools and pool utilization during adenine starvation.
    Pendyala L; Wellman AM
    Biochim Biophys Acta; 1975 Apr; 385(2):194-206. PubMed ID: 236005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiles of purine metabolism in leaves and roots of Camellia sinensis seedlings.
    Deng WW; Ashihara H
    Plant Cell Physiol; 2010 Dec; 51(12):2105-18. PubMed ID: 21071429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of PgAGO, a novel conifer gene of the Argonaute family expressed in apical cells and required for somatic embryo development in spruce.
    Tahir M; Law DA; Stasolla C
    Tree Physiol; 2006 Oct; 26(10):1257-70. PubMed ID: 16815828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.