BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11282604)

  • 1. Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products.
    Gesell M; Hammer E; Specht M; Francke W; Schauer F
    Appl Environ Microbiol; 2001 Apr; 67(4):1551-7. PubMed ID: 11282604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides.
    Sietmann R; Hammer E; Specht M; Cerniglia CE; Schauer F
    Appl Environ Microbiol; 2001 Sep; 67(9):4158-65. PubMed ID: 11526019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation and ring cleavage of dibenzofuran by the filamentous fungus Paecilomyces lilacinus.
    Gesell M; Hammer E; Mikolasch A; Schauer F
    Arch Microbiol; 2004 Sep; 182(1):51-9. PubMed ID: 15278240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives.
    Sietmann R; Gesell M; Hammer E; Schauer F
    Chemosphere; 2006 Jul; 64(4):672-85. PubMed ID: 16352329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxylation of biphenyl by the yeast Trichosporon mucoides.
    Sietmann R; Hammer E; Moody J; Cerniglia CE; Schauer F
    Arch Microbiol; 2000 Nov; 174(5):353-61. PubMed ID: 11131026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of biphenyl by the ascomycetous yeast Debaryomyces vanrijiae.
    Lange J; Hammer E; Specht M; Francke W; Schauer F
    Appl Microbiol Biotechnol; 1998 Sep; 50(3):364-8. PubMed ID: 9802222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase.
    Seeger M; Cámara B; Hofer B
    J Bacteriol; 2001 Jun; 183(12):3548-55. PubMed ID: 11371517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel insights into the fungal oxidation of monoaromatic and biarylic environmental pollutants by characterization of two new ring cleavage enzymes.
    Schlüter R; Lippmann R; Hammer E; Gesell Salazar M; Schauer F
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5043-53. PubMed ID: 23400446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of hydroxylation of biphenyl by Cunninghamella echinulata.
    Smith RV; Davis PJ; Clark AM; Prasatik SK
    Biochem J; 1981 Apr; 196(1):369-71. PubMed ID: 7306077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alachlor oxidation by the filamentous fungus Paecilomyces marquandii.
    Słaba M; Szewczyk R; Piątek MA; Długoński J
    J Hazard Mater; 2013 Oct; 261():443-50. PubMed ID: 23974531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cometabolic ring fission of dibenzofuran by Gram-negative and Gram-positive biphenyl-utilizing bacteria.
    Stope MB; Becher D; Hammer E; Schauer F
    Appl Microbiol Biotechnol; 2002 Jun; 59(1):62-7. PubMed ID: 12073133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of 2,2'-dihydroxybiphenyl by Pseudomonas sp. strain HBP1: production and consumption of 2,2',3-trihydroxybiphenyl.
    Kohler HP; Schmid A; van der Maarel M
    J Bacteriol; 1993 Mar; 175(6):1621-8. PubMed ID: 8449871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New metabolites in dibenzofuran cometabolic degradation by a biphenyl-cultivated Pseudomonas putida strain B6-2.
    Li Q; Wang X; Yin G; Gai Z; Tang H; Ma C; Deng Z; Xu P
    Environ Sci Technol; 2009 Nov; 43(22):8635-42. PubMed ID: 20028064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of 2,2'- and 3,3'-dihydroxybiphenyl by the biphenyl catabolic pathway of Comamonas testosteroni B-356.
    Sondossi M; Barriault D; Sylvestre M
    Appl Environ Microbiol; 2004 Jan; 70(1):174-81. PubMed ID: 14711640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of fungicide 2-allylphenol in Rhizoctonia cerealis.
    Qu T; Zhang J; Meng Z; Liu X; Cao Y; Li J; Hao JJ
    Ecotoxicol Environ Saf; 2014 Apr; 102():136-41. PubMed ID: 24530843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of an imidazole fungicide (prochloraz) in the rat after oral administration.
    Laignelet L; Rivière JL; Lhuguenot JC
    Food Chem Toxicol; 1992 Jul; 30(7):575-83. PubMed ID: 1521831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of polyfluorinated biphenyl in bacteria.
    Hughes D; Clark BR; Murphy CD
    Biodegradation; 2011 Jul; 22(4):741-9. PubMed ID: 20830605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of ortho-substituted biphenyls by Methylosinus trichosporium OB3b: substituent effects on oxidation kinetics and product formation.
    Lindner AS; Adriaens P; Semrau JD
    Arch Microbiol; 2000; 174(1-2):35-41. PubMed ID: 10985740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of coupling products formed by biotransformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus.
    Jonas U; Hammer E; Haupt ET; Schauer F
    Arch Microbiol; 2000 Dec; 174(6):393-8. PubMed ID: 11195094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of terodiline I. Identification of metabolites in dog urine by mass spectrometry.
    Norén B; Stromberg S; Ericsson O; Olsson LI; Moses P
    Biomed Mass Spectrom; 1985 Aug; 12(8):367-79. PubMed ID: 2931126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.