These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 11282650)
1. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Orphan VJ; Hinrichs KU; Ussler W; Paull CK; Taylor LT; Sylva SP; Hayes JM; Delong EF Appl Environ Microbiol; 2001 Apr; 67(4):1922-34. PubMed ID: 11282650 [TBL] [Abstract][Full Text] [Related]
2. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Teske A; Hinrichs KU; Edgcomb V; de Vera Gomez A; Kysela D; Sylva SP; Sogin ML; Jannasch HW Appl Environ Microbiol; 2002 Apr; 68(4):1994-2007. PubMed ID: 11916723 [TBL] [Abstract][Full Text] [Related]
3. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
4. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment. Jagersma GC; Meulepas RJ; Heikamp-de Jong I; Gieteling J; Klimiuk A; Schouten S; Damsté JS; Lens PN; Stams AJ Environ Microbiol; 2009 Dec; 11(12):3223-32. PubMed ID: 19703218 [TBL] [Abstract][Full Text] [Related]
5. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Thomsen TR; Finster K; Ramsing NB Appl Environ Microbiol; 2001 Apr; 67(4):1646-56. PubMed ID: 11282617 [TBL] [Abstract][Full Text] [Related]
7. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Schreiber L; Holler T; Knittel K; Meyerdierks A; Amann R Environ Microbiol; 2010 Aug; 12(8):2327-40. PubMed ID: 21966923 [TBL] [Abstract][Full Text] [Related]
8. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423 [TBL] [Abstract][Full Text] [Related]
9. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
10. Diversity and distribution of methanotrophic archaea at cold seeps. Knittel K; Lösekann T; Boetius A; Kort R; Amann R Appl Environ Microbiol; 2005 Jan; 71(1):467-79. PubMed ID: 15640223 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3. Bhattarai S; Cassarini C; Gonzalez-Gil G; Egger M; Slomp CP; Zhang Y; Esposito G; Lens PNL Microb Ecol; 2017 Oct; 74(3):608-622. PubMed ID: 28389729 [TBL] [Abstract][Full Text] [Related]
12. Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep. Yu H; Speth DR; Connon SA; Goudeau D; Malmstrom RR; Woyke T; Orphan VJ Appl Environ Microbiol; 2022 Jun; 88(11):e0210921. PubMed ID: 35604226 [TBL] [Abstract][Full Text] [Related]
13. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Inagaki F; Tsunogai U; Suzuki M; Kosaka A; Machiyama H; Takai K; Nunoura T; Nealson KH; Horikoshi K Appl Environ Microbiol; 2004 Dec; 70(12):7445-55. PubMed ID: 15574947 [TBL] [Abstract][Full Text] [Related]
14. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Lösekann T; Knittel K; Nadalig T; Fuchs B; Niemann H; Boetius A; Amann R Appl Environ Microbiol; 2007 May; 73(10):3348-62. PubMed ID: 17369343 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. Biddle JF; Cardman Z; Mendlovitz H; Albert DB; Lloyd KG; Boetius A; Teske A ISME J; 2012 May; 6(5):1018-31. PubMed ID: 22094346 [TBL] [Abstract][Full Text] [Related]
16. Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane. Briggs BR; Pohlman JW; Torres M; Riedel M; Brodie EL; Colwell FS Appl Environ Microbiol; 2011 Oct; 77(19):6780-7. PubMed ID: 21821755 [TBL] [Abstract][Full Text] [Related]
17. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Lloyd KG; Lapham L; Teske A Appl Environ Microbiol; 2006 Nov; 72(11):7218-30. PubMed ID: 16980428 [TBL] [Abstract][Full Text] [Related]
18. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Harrison BK; Zhang H; Berelson W; Orphan VJ Appl Environ Microbiol; 2009 Mar; 75(6):1487-99. PubMed ID: 19139232 [TBL] [Abstract][Full Text] [Related]
19. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Girguis PR; Cozen AE; DeLong EF Appl Environ Microbiol; 2005 Jul; 71(7):3725-33. PubMed ID: 16000782 [TBL] [Abstract][Full Text] [Related]
20. Subgroup Characteristics of Marine Methane-Oxidizing ANME-2 Archaea and Their Syntrophic Partners as Revealed by Integrated Multimodal Analytical Microscopy. McGlynn SE; Chadwick GL; O'Neill A; Mackey M; Thor A; Deerinck TJ; Ellisman MH; Orphan VJ Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29625978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]