BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 11283236)

  • 21. ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition.
    Nieminen AL; Saylor AK; Herman B; Lemasters JJ
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C67-74. PubMed ID: 8048493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: role of mitochondria.
    Hernandez-Guijo JM; Maneu-Flores VE; Ruiz-Nuno A; Villarroya M; Garcia AG; Gandia L
    J Neurosci; 2001 Apr; 21(8):2553-60. PubMed ID: 11306608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential effects of mitochondrial inhibitors on porcine granulosa cells and oocytes.
    Kansaku K; Itami N; Kawahara-Miki R; Shirasuna K; Kuwayama T; Iwata H
    Theriogenology; 2017 Nov; 103():98-103. PubMed ID: 28779614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial clearance of cytosolic Ca(2+) in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca(2+)].
    David G
    J Neurosci; 1999 Sep; 19(17):7495-506. PubMed ID: 10460256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular acidosis protects cultured hepatocytes from the toxic consequences of a loss of mitochondrial energization.
    Masaki N; Thomas AP; Hoek JB; Farber JL
    Arch Biochem Biophys; 1989 Jul; 272(1):152-61. PubMed ID: 2735760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligomycin strengthens the effect of cyclosporin A on mitochondrial permeability transition by inducing phosphate uptake.
    Chávez E; Rodríguez JS; García G; García N; Correa F
    Cell Biol Int; 2005 Jul; 29(7):551-8. PubMed ID: 15979905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulation-evoked increases in cytosolic [Ca(2+)] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent.
    David G; Barrett EF
    J Neurosci; 2000 Oct; 20(19):7290-6. PubMed ID: 11007886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1-43.
    Quigley PA; Msghina M; Govind CK; Atwood HL
    J Neurophysiol; 1999 Jan; 81(1):356-70. PubMed ID: 9914295
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of mitochondria in intracellular calcium sequestration by rat gonadotropes.
    Hehl S; Golard A; Hille B
    Cell Calcium; 1996 Dec; 20(6):515-24. PubMed ID: 8985597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sodium-dependent increase in quantal secretion induced by brevetoxin-3 in Ca2+-free medium is associated with depletion of synaptic vesicles and swelling of motor nerve terminals in situ.
    Meunier FA; Colasante C; Molgo J
    Neuroscience; 1997 Jun; 78(3):883-93. PubMed ID: 9153666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.
    Cheranov SY; Jaggar JH
    J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that angiotensin II decreases mitochondrial calcium in the glomerulosa cell.
    Kramer RE
    Mol Cell Endocrinol; 1990 Dec; 74(2):87-100. PubMed ID: 1708733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. alpha-Latrotoxin releases calcium in frog motor nerve terminals.
    Tsang CW; Elrick DB; Charlton MP
    J Neurosci; 2000 Dec; 20(23):8685-92. PubMed ID: 11102474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrastructure of botulinum type-A poisoned frog motor nerve terminals after enhanced quantal transmitter release caused by carbonyl cyanide m-chlorophenylhydrazone.
    Pécot-Dechavassine M; Molgo J; Thesleff S
    Neurosci Lett; 1991 Sep; 130(1):5-8. PubMed ID: 1684235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mefloquine selectively increases asynchronous acetylcholine release from motor nerve terminals.
    McArdle JJ; Sellin LC; Coakley KM; Potian JG; Hognason K
    Neuropharmacology; 2006 Mar; 50(3):345-53. PubMed ID: 16288931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of extracellular calcium in exo- and endocytosis of synaptic vesicles at the frog motor nerve terminals.
    Zefirov AL; Abdrakhmanov MM; Mukhamedyarov MA; Grigoryev PN
    Neuroscience; 2006 Dec; 143(4):905-10. PubMed ID: 17000054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone induces vasorelaxation without involving K
    Zhang YQ; Shen X; Xiao XL; Liu MY; Li SL; Yan J; Jin J; Gao JL; Zhen CL; Hu N; Zhang XZ; Tai Y; Zhang LS; Bai YL; Dong DL
    Br J Pharmacol; 2016 Nov; 173(21):3145-3158. PubMed ID: 27534899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caffeine and carbonyl cyanide m-chlorophenylhydrazone increased evoked and spontaneous release of luteinizing hormone-releasing hormone from intact presynaptic terminals.
    Cao YJ; Peng YY
    Neuroscience; 1999; 92(4):1511-21. PubMed ID: 10426503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disruption of actin impedes transmitter release in snake motor terminals.
    Cole JC; Villa BR; Wilkinson RS
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):579-86. PubMed ID: 10856113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.